Contents

Preface and Acknowledgments vii

Chapter 1

Structure in Solids 1

- 1.1 Limits on Homogeneity 1
- 1.2 States of Matter 1
- 1.3 Diffraction 2
- 1.4 Producing Short Wavelength Radiation 4
- The Action of Crystals on the Radiation 5 1.5
- 1.6 Bragg Reflection 5
- Standard Crystal Lattices 7 1.7
- 1.8 Miller Indices 7
- 1.9 Cubic Point Lattices 10
- 1.10 Some Simple Crystal Types 12
- 1.11 Stability Conditions 13
- 1.12 Avogadro's Number 16
- 1.13 Surface Structure 17
- The Quasicrystalline State 19 1.14 Questions 19 Problems 19 References 21

Chapter 2

Structure in Molecules and Atoms 23

- 2.1 Introduction 23
- 2.2Symmetric Coordination Structures 24
- 2.3 Momentum and Energy Relationships 25
- Diffraction by Randomly Oriented 2.4Molecules 26
- 2.5 Electron Diffraction Molecular Parameters 30
- 2.6 Intensity in a Beam 30
- 2.7 The Cross Section Concept 31
- 2.8 The Nuclear Atom 33
- Composition of Atoms and Nuclei 35 2.9 Questions 35 Problems 35 References 36

Chapter 3

"Gases and Collective Properties 37

- 3.1 Macroscopic Properties 37
- 3.2 Elements of Ideal-Gas Theory 37
- 3.3 Temperature 40
- 3.4 Constants R and T_0 42
- 3.5 Gaseous Solutions 43
- 3.6 Translational, Rotational, Vibrational Energies 44
- 3.7 Quantum Restrictions 46

- 3.8 Allowing for Molecular Interactions 47
- 3.9 Gas-Liquid Isotherms 49
- 3.10 Corresponding States 51
- 3.11 Compressibility Factor for a Gas 52
- 3.12 Virial Equation of State 52
- 3.13 **Distribution of Equivalent Particles** in a Potential Field 53
- 3.14 The Maxwell Distribution Law 55
- The Collision Rate Density 57 3.15
 - Questions 60 Problems 60 References 61

Chapter 4

The First Law for Energy 63

- 4.1 Independent Thermodynamic Variables 63
- 4.2 Work 63
- 4.3 Heat 65
- 4.4 The First Law 65
- 4.5 Compression (P-V) Work 66
- 4.6 Isochoric and Isobaric Heats 67
- 4.7 Energy Capacities 69
- Reversible Adiabatic Change in an 4.8 Ideal Gas 71
- 4.9 Conditions in a Planar Pressure Pulse 72
- 4.10 Contributions to Energy Capacity C_v 74 **Relating Differentials and Partial** 4.11
- Derivatives 75 4.12 The Difference C_P - C_V 77
- 4.13 Coefficients of Thermal Expansion and Isothermal Compressibility 77
- Exact Differentials 78 4.14
- 4.15 Partial Molar Properties - 79 Questions 81 Problems 81
 - References 83

Chapter 5

Entropy and the Second Law 85

- 5.1Accessibility of States 85
- 5.2 Integrability of the Reversible Heat 86
- 5.3 Form for the Integrating Factor 88
- 5.4 Entropy Changes of Systems 88
- 5.5 The Second Law 90
- 5.6 Entropy of Mixing 91
- 5.7 Probability Change on Mixing 92
- 5.8 Effectively Contributing Microstates 93
- 5.9 Helmholtz Free Energy 94
- 5.10 Gibbs Free Energy 95

- Contents
- 5.11 Key Thermodynamic Relations 96
- 5.12 The Chemical Potential 99
- 5.13 Concentration Gradients 100
- 5.14 General Direction for a Process 102
- 5.15 A Fourth Law 103 Questions 103 Problems 104 References 105

Chapter 6

Relationships between Phases 109

- 6.1 Intensive Variables 109
- 6.2 The Gibbs Phase Rule 109
- 6.3 Equilibrium States for Water 110
- 6.4 Solutions 111
- 6.5 Aspects of Multicomponent Phase Diagrams 113
- 6.6 Singularities Separating Phases 115
- 6.7 The Clapeyron and Ehrenfest Equations 120
- 6.8 Variation of Vapor Pressure with Temperature 123
- 6.9 Variation of Vapor Pressure with Total Pressure 124
- 6.10 Variation of Vapor Pressure with Concentration 125
- 6.11 The Mole-Fraction Activity 128
- 6.12 Concentration Units 128
- 6.13 Elevation of the Boiling Point 129
- 6.14 Depression of the Freezing Point 131
- 6.15 Permeability of Membranes 133
- 6.16 Osmotic Pressure 134
- 6.17 Equilibria among Phases 135 Questions 136 Problems 136 References 139

Chapter 7

Relationships among Reactants 143

- 7.1 Introduction 143
- 7.2 Conventions 143
- 7.3 Measuring Reaction Heats 144
- 7.4 Relating the Isobaric and Isochoric Reaction Heats 145
- 7.5 Variation in Heat of Reaction with Temperature 146
- 7.6 Calorimetric Entropy 148
- 7.7 Correcting the Calorimetric Entropy to the Ideal Gas State 149
- 7.8 Correcting the Calorimetric Entropy for Frozen-in Disorder 150
- 7.9 Key Thermodynamic Properties 151
- 7.10 Partial Molar Gibbs Energy 153
- 7.11 Gibbs Energy of Reaction 154
- 7.12 Energetic Conditions on Equilibria 156
- 7.13 Equilibria in Ideal Gaseous Phases 157
- 7.14 Heterogeneous Gas Equilibria 161
- 7.15 Variation of Equilibrium Constants with Temperature 162
- 7.16 Variation of Equilibrium Constants with Pressure 163

- 7.17 The Activity Coefficient Concept 163
- 7.18 Helmholtz Energy of Reaction 164 Questions 165 Problems 166 References 168

Chapter 8

Equilibria in Condensed Phases 171

- 8.1 The Chemical Potential Revisited 171
- 8.2 Useful Equilibrium Expressions 172
- 8.3 Conditions Determining Equilibria 176
- 8.4 Key Thermodynamic Considerations 183
- 8.5 Average Electric Atmosphere about an Ion 185
- 8.6 An Integral Form of Coulomb's Law 185
- 8.7 Application of Gauss's Theorem to the Ionic Atmosphere 187
- 8.8 Variation of Electric Potential in an Ionic Atmosphere 188
- 8.9 Free Energy of the Ionic Atmosphere 189
- 8.10 Debye-Hückel Equations 190
- 8.11 Equilibria among Phases Revisited 196
- 8.12 Determining Ionic Activities 199
- 8.13 Limitations of the Debye-Hückel Treatment 200 Questions 201
 - Problems 201
 - References 203

Chapter 9

Electrochemistry 207

- 9.1 Definitions and Units 207
- 9.2 Electrode Reactions 208
- 9.3 Electrolyte Transference 209
- 9.4 Moving Ion Clouds and Boundaries 212
- 9.5 Ohm's Law 214
- 9.6 Equivalent Conductance 216
- 9.7 Determining Solubilities and Degrees of Ionization 219
- 9.8 Variation of Ion Conductance with Viscosity 220
- 9.9 Cell Conventions 222
- 9.10 Measuring and Allocating Voltages 224
- 9.11 Cell Energetics 225
- 9.12 Cell with Transference 228
- 9.13 Reference Cells and Electrodes 229
- 9.14 Measuring the pH of Solutions 230
- 9.15 Overpotential 232
- 9.16 Electrode Potentials for Other Solvents 233 9.17 Further Cell Thermodynamics 234
 - Questions 235 Problems 236
 - References 238

Chapter 10

Basic Quantum Mechanics 241

- 10.1 The Statistical Nature of the Path of a Mass Element or Particle 241
- 10.2 Representing a Constituent State 242
- 10.3 Introducing the Translational Symmetries 243

10.4	
	Direction 245
10.5	Diffraction Experiments Revisited 246
10.6	Rectangularly Symmetric Free Motion 246
10.7	Translational Energy of the Molecules in
	an Ideal Gas 248
10.8	Enumerating and Filling Translational
	States 251
10.9	Normalization and Orthogonality
	Conditions 254
10.10	Standing-Wave Translational
	Functions 256
10.11	Confined Rectangularly Symmetric
	Motion 257
10.12	Attenuated Motion 259
10.13	Joining Different Constant-Potential
	Regions 260
10.14	A Differential Equation for Multidirectional
	Propagation 263
10.15	The Schrödinger Equations 265
10.16	Suitable Solutions 266
10.17	Expressing ∇^2 in Orthogonal Generalized
	Coordinates 266
	Questions 269
	Problems 270
	References 272

Chapter 11

Free Rotational and Angular Motion 275

- 11.1 Introduction 275
- 11.2 Classical Rotational Kinetic Energy 277
- 11.3 Quantized Angular Momentum States of a Linear Rotator 278
- 11.4 Energy Levels for the Linear Rotator 279
- 11.5 Rotational Spectrum of a Linear Molecule 281
- 11.6 Broadening of Spectral Lines 284
- 11.7 Quantization of Cylindrically Symmetric Rotators 284
- 11.8 The Asymmetric Rotator 285
- 11.9 Rotational Partition Functions and the Resulting Energies 287
- 11.10 Independence of the Angular Factor $Y(\theta, \phi)$ 290
- 11.11 A Multiaxial Formula for $Y(\theta, \phi)$ 291
- 11.12 Directional Behavior of the Standard Rotational State Functions 292
- 11.13 Normalization and Orthogonality Conditions Revisited 298
- 11.14 Magnetic Energy Associated with Angular Momentum 300
- 11.15 Observing Spatial Quantization in a Beam 303
- 11.16 Spin States 304 Questions 305 Problems 306 References 308

Chapter 12

Vibrational and Radial Motion 309

12.1 Pertinent Potentials 309

- 12.2 Schrödinger Equation for the Harmonic Oscillator 312
- 12.3 Quantization of the Harmonic Oscillator 313
- 12.4 Nodeless Solutions 315
- 12.5 Acceptable Wavy Solutions 317
- 12.6 Partition Function for a Vibrational Mode 317
- 12.7 Selection Rules 320
- 12.8 Vibration-Rotation Spectra 321
- 12.9 Raman Spectra 324
- 12.10 Bond Anharmonicity and its Effect 325
- 12.11 Asymptotic Solutions for the Central Field 330
- 12.12 Radial State Functions for a Hydrogenlike Atom 331
- 12.13 Electronic Spectrum of a Hydrogenlike Atom 334
- 12.14 Multiparticle Systems 334
- 12.15 Multielectron Uninuclear Structures 337
- 12.16 Combining Angular Momenta 338 Questions 341 Problems 342 References 344

Chapter 13

Analyzing Organized Structures 347

- 13.1 The General Behavior of Bases 34713.2 Representing Nondistortive
- Operations 347 13.3 Symmetry Operations 350
- 13.4 Pertinent Permutation Matrices 352
- 13.5 Other Transformation Matrices 353
- 13.6 Classifying Operations 358
- 13.7 Character Vectors 359
- 13.8 Symmetry Species 361
- 13.9 Selection Rules 363
- 13.10 The Orthogonality Condition 364
- 13.11 Generating Primitive Symmetry Species 365 Questions 368 Problems 369 References 371

Chapter 14

States of Molecular Electrons 373

- 14.1 Introduction 373
- 14.2 The Hydrogen Molecule Ion Model 373
- 14.3 Correlations with Atomic Structures 375
- 14.4 Bonding between Two Equivalent Atoms 376
- 14.5 Symmetric Three-Center Bonds 380
- 14.6 Symmetric Six-Center Bonds 385
- 14.7 Conventional Resonance Energy and the True Delocalization Energy 389
- 14.8 The Variation Theorem 391
- 14.9 Linear Variation Functions 392
- 14.10 Bonding between Two Nonequivalent Atoms 394
- 14.11 Pi Bonding in Fulvene 396 Questions 400

Contents

Problems 401 References 401

Cł

Chapter 15	
Phenomenonological Chemical Kinetics 405	
The Rate of a Reaction 405	
Reaction Order and Molecularity 407	
Zero-Order Reactions 407	
First-Order Reactions 408	
Second-Order Reactions 408	
Third-Order Reactions 410	
Determining the Differential Rate Law 412	
Determining Order from an Integrated	
Form 414	
The Arrhenius Equation 416	
Reversible First-Order Reactions 418	
First-Order Reaction Opposed by a	
Second-Order Reaction 419	
Perturbation Experiments 420	
Reactions in High Pressure Gaseous and	
in Condensed Phases 421	
The Encounter Rate Constants 422	
Solution Reaction Rates 424	
Dependence of the Specific Reaction Rate	
on Activity Coefficients 426	
Questions 428	
Problems 429	
References 432	
Chapter 16	
Explanatory Mechanisms 435	
Types of Elementary Reactions 435	

С

E

- Activation in Simple First-Order 16.2 Reactions 436
- 16.3 Decomposition of Nitrogen Pentoxide 438
- 16.4 Hydrogen-Iodine Reactions 440
- 16.5 Hydrogen-Bromine Reactions 442
- 16.6 Hydrogen-Chlorine Reactions 444
- 16.7 Thermal Explosions 445
- 16.8 Hydrogen-Oxygen Reactions 448
- 16.9 Decomposition of Ethane 451
- 16.10 The Activity Coefficient Effect 452
- 16.11 Conversion of Ammonium Cyanate to Urea 455
- 16.12 Nitration of Aromatic Compounds 456 Questions 458 Problems 459 References 461

Chapter 17

Statistical Thermodynamics 463

- 17.1 Earlier Discussions 463
- 17.2 Relating Thermodynamic Properties to the Partition Function 463
- 17.3 Relating System Partition Functions to Molecular Ones 466
- 17.4 Ideal Translational Entropy 468
- 17.5 Energy and Entropy of a Vibrational Mode 470

- 17.6 The Ideal Concentration Equilibrium Constant 471
- 17.7 Basis for the Distribution Law 473
- 17.8 Black-Body Radiation 475
- 17.9 Allowance for Particle Transfer 477
- 17.10 Fermi-Dirac Statistics 479
- 17.11 Bose-Einstein Statistics 482 Questions 483 Problems 484 References 485

Chapter 18

Reaction Rate Theory 487

- 18.1 The Transition State 487
- The Eyring Equation 489 18.2
- 18.3 The Kinetic Isotope Effect 492
- 18.4 Static Nonideality 493
- Transition State Recrossings 494 18.5
- 18.6 Thermodynamic Considerations 496
- 18.7 Transition State Location 497
- Viscous Nonideality 498 18.8
- 18.9 Variation of the Rate Coefficients with Temperature 500
- 18.10 Further Relationships 501 Questions 504 Problems 505 References 507
- **Chapter 19**

Photochemistry 509

- 19.1 Pertinent Wave Properties 509
- 19.2 Pertinent Particle Properties 510
- 19.3 Phenomenology of Absorption 512
- 19.4 Absorption Intensities 514
- Electronic Transitions 515 19.5
- 19.6 Reaction Possibilities 518
- 19.7 The Hydrogen-Iodine Reaction 519
- The Hydrogen-Bromine Reaction 521 19.8 19.9 The Hydrogen-Chlorine Reaction 521
- 19.10 Photosensitization 522
 - Chemiluminescence 523
- 19.11
- 19.12 The Carbon Monoxide-Oxygen Reaction 524 Questions 525 Problems 526 References 527
- Glossary 529

Appendix 1: Fundamental Units 531

Appendix 2: Derived Units 532

Appendix 3: Physical Constants 533

Appendix 4: Primitive Character Vectors and Basis Functions for Important Symmetry Groups 534

Index 543

xii