543.84 TEU

Contents

Chapter 1	A Brief Definition of High-Temperature Liquid Chromatography	
	1.1 What is High-Temperature Liquid Chromatography?	1
	1.2 What is a Suitable Temperature Range for	1
	High-Temperature Liquid Chromatography?	4
	1.3 Why should High Temperatures be used in	
	Liquid Chromatography?	5
	1.4 What are the Principal Requirements of	o
	mgn-remperature Equid Chromatography:	0
Chapter 2	System Set-up for High-Temperature Liquid	
	Chromatography	15
	2.1 The Heating System	15
	2.2 The Column	20
	2.3 The Detector	21
	2.4 The Back-Pressure Regulator	22
Chapter 3	The Heating System	24
	3.1 Preheating of the Mobile Phase	25
	3.1.1 Thermal Mismatch Broadening	25
	3.1.2 Viscous Heat Dissipation	31

RSC Chromatography Monographs No. 13

High-Temperature Liquid Chromatography: A User's Guide for Method Development

By Thorsten Teutenberg

[©] Thorsten Teutenberg 2010

Published by the Royal Society of Chemistry, www.rsc.org

		3.1.3 Technical Implementation of Eluent	
		Preheating	35
		3.1.4 Experimental Verification of Eluent Preheating	
		Efficiency	37
	3.2	Column Heating	40
		3.2.1 Air-Bath Ovens	40
		3.2.2 Water-Jacket Ovens	40
		3.2.3 Block-Heating Ovens	41
	3.3	Post-Column Cooling of the Mobile Phase	42
	3.4	Temperature Programming	43
	3.5	A Critical Comparison between Different Ovens	46
		3.5.1 Air-Bath Ovens	46
		3.5.2 Water-Jacket Ovens	48
		3.5.3 Block-Heating Ovens	48
		3.5.4 Summary	49
Chapter 4	Mol	oile Phase Considerations	52
	4.1	Influence of Temperature on Vapour Pressure	52
		4.1.1 Prevention of a Phase Transition using a	
		Back-Pressure Regulator	56
		4.1.2 Prevention of a Phase Transition using a	
		Restriction Capillary	61
	4.2	Influence of Temperature on Viscosity	64
		4.2.1 Practical Implications – The Restriction	
		Capillary	67
		4.2.2 Practical Implications – Kinetic Aspects and	
		Column Pressure	69
	4.3	Influence of Temperature on Static Permittivity	75
	4.4	The Water-THF System	81
	4.5	The Dortmund Data Bank	83
Chapter 5	Suit	able Stationary Phases	87
	5.1	Column Bleed	89
	5.2	Investigation of Column Degradation at High	
		Temperatures	91
	5.3	Silica-Based Stationary Phases	93
	5.4	Zirconium Dioxide Stationary Phases	97
	5.5	Titanium Dioxide Stationary Phases	101
	5.6	Polymeric Stationary Phases	104
	5.7	Other Materials	105
		5.7.1 Graphitized Carbon Column	105
		5.7.2 Thermo-Responsive Stationary Phases	107
	5.8	General Conclusions	109

Chapter 6	Met	hod Development using Temperature as an Active	
_	Var	114	
	6.1	Special Requirements of the Heating System	114
	6.2	Special Requirements of the Column	
		Hardware	115
	6.3	Mobile Phase Considerations	116
	6.4	Influence of Temperature on Resolution	118
		6.4.1 Influence of Temperature on	110
		Retention	119
		6.4.2 Influence of Temperature on	175
		6.4.3 Influence of Temperature on Efficiency	123
	65	Method Development	131
	0.5	6.5.1 Isothermal and Isocratic Separations	131
		6.5.2 Temperature Gradient and Isocratic	
		Separation	135
		6.5.3 Simultaneous Temperature and Solvent	
		Gradient Separation	140
		6.5.4 Detector Optimization	143
Chapter 7	Analyte Stability		149
	7.1	Evaluation of Analyte Stability using UV	
		Detection	150
	7.2	Influence of the Stationary Phase on Analyte	
		Stability	152
	7.3	Definition of Critical Criteria for Analyte	
		Stability	154
Chapter 8	Spee	cial Hyphenation Techniques	158
	8.1	Flame Ionization Detection	159
	8.2	LC-NMR	164
	8.3	Isotope Ratio Mass Spectrometry	168
	8.4	LC Taste [®]	174
	8.5	Drug Screening	177
Chapter 9	Crit	ical Outlook and Future Prospects	182
	9.1	Pellicular Particles	182
	9.2	Capillary and Nano HPLC	184
	9.3	Comprehensive Two-Dimensional Liquid	
		Chromatography	189

^		Contents
Appendix A	Vapour Pressure Data	193
Appendix B	Viscosity Data	197
Appendix C	Static Permittivity Data	201
Subject Inde	205	