Contents

Contributions to Vol XLIII .. vii
Volumes in the Series ... ix
Series Editor's Preface ... xxi

Preface ... 1

Chapter 1. Quality control for pesticide residues analysis

1.1 Introduction ... 1
1.2 Accreditation ... 4
1.3 Sampling, transport, processing and storage of samples 5
 1.3.1 Sampling .. 5
 1.3.2 Laboratory sample transportation 6
1.3.3 Sample preparation and processing prior to analysis 7
1.4 Pesticide standards, calibration solutions and similar 8
 1.4.1 Identity and purity of standards 8
 1.4.2 Storage of reference standards 9
 1.4.3 Preparation, use and storage of stock and working standards ... 9
1.5 Extraction and concentration 10
 1.5.1 Extraction conditions and efficiency 12
 1.5.2 Extract concentration and dilution to volume 12
1.6 Contamination, interference, and natural sources of the analyte ... 14
 1.6.1 Contamination ... 13
 1.6.2 Interference ... 14
 1.6.3 Natural sources of the analyte 15
1.7 Calibration and chromatographic integration 15
 1.7.1 Mass calibration of mass spectrometric detectors 15
 1.7.2 General requirements for quantitative calibration 17
 1.7.3 Matrix effects and matrix-matched calibration 21
 1.7.4 Effects of pesticide mixtures on calibration 21
 1.7.5 Calibration for pesticides that are mixtures of isomers or other components 23
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7.6 Calibration using derivatives or degradation products</td>
<td>24</td>
</tr>
<tr>
<td>1.7.7 Chromatographic data acquisition rate, noise and integration</td>
<td>24</td>
</tr>
<tr>
<td>1.8 Analytical methods and analytical performance</td>
<td>25</td>
</tr>
<tr>
<td>1.8.1 Acceptability of analytical methods</td>
<td>25</td>
</tr>
<tr>
<td>1.8.2 Recovery for determination of acceptability of performance</td>
<td>26</td>
</tr>
<tr>
<td>1.8.3 Proficiency testing and analysis of reference materials</td>
<td>27</td>
</tr>
<tr>
<td>1.9 Confirmation of results</td>
<td>28</td>
</tr>
<tr>
<td>1.9.1 Principles</td>
<td>28</td>
</tr>
<tr>
<td>1.9.2 Confirmation by MS</td>
<td>29</td>
</tr>
<tr>
<td>1.9.3 Confirmation by an independent laboratory</td>
<td>31</td>
</tr>
<tr>
<td>1.10 Reporting of results</td>
<td>31</td>
</tr>
<tr>
<td>1.10.1 Expression of results</td>
<td>31</td>
</tr>
<tr>
<td>1.10.2 Calculation of results</td>
<td>31</td>
</tr>
<tr>
<td>1.10.3 Rounding of data</td>
<td>36</td>
</tr>
<tr>
<td>1.10.4 Quantifying the uncertainty of measurement</td>
<td>36</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>37</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
</tbody>
</table>

Chapter 2. European Union legislation on pesticide residues

Luis Martín Plaza

2.1 Introduction and scope | 39 |
2.2 Overview on EU pesticides residues legislation | 40 |
2.3 Meaning of an MRL | 43 |
2.4 Setting of EU MRLs | 47 |
2.5 Import tolerances, extrapolation and level of determination | 62 |
2.6 Monitoring, reporting and control | 63 |
2.7 Rapid alert system in food and feed | 65 |
2.8 Activities in international fora | 73 |
2.8.1 The OECD | 73 |
2.8.2 The World Trade Organisation | 73 |
2.8.3 The Codex Alimentarius commission | 73 |
2.8.4 The ACP–EC Partnership Agreement | 73 |
2.9 Future trends | 74 |
Chapter 3. Sample handling and clean-up procedures I

Stewart L. Reynolds

3.1 Introduction and scope ... 75
3.2 Laboratory sample preparation 75
3.2.1 Portion of the laboratory sample to be analysed 75
3.3 Laboratory sample processing 77
3.3.1 Homogeneity .. 77
3.3.2 Analyte stability .. 78
3.4 Extraction of pesticide residues with organic solvents 79
3.4.1 Extraction techniques ... 79
3.4.2 Properties of organic solvents 80
3.4.3 Basic safety with solvent usage 81
3.4.4 Solvents used as extractants in multi-residue methods ... 81
3.5 Historical development of multi-residue methods based on the use of acetonitrile, acetone and ethyl acetate as extraction solvents ... 82
3.5.1 Acetonitrile ... 82
3.5.2 Acetone .. 83
3.5.3 Ethyl Acetate ... 85
3.6 Factors affecting extraction efficiency 86
3.6.1 pH .. 86
3.6.2 The use of salts for drying solvent extracts 89
3.6.3 The use of salts in liquid-liquid partition 89
3.7 Clean-up techniques ... 90
3.7.1 Gel permeation chromatography 90
3.7.2 High-performance gel chromatography 93
3.8 Comparisons of IREMs for extraction efficiency 93
3.8.1 Inter-comparison study of the relative extraction efficiencies of acetone and EtAc 95
3.9 Overall conclusions ... 105
References .. 106

Chapter 4. Sample handling and clean-up procedures II—new developments

Michelangelo Anastasiades, Elies Scherbaum

4.1 Introduction ... 113
Contents

4.2 Sample processing and homogenisation 115
4.3 Recent advancements in traditional RM5s 117
4.4 Extraction and partitioning assisted by solid support materials 120

4.4.1 Introduction 124
4.4.2 Dispersion of samples on macro porous normal-phase adsorbents 124
4.4.3 Dispersion of extracts on support materials 125
4.4.4 Matrix solid phase dispersion (MSPD) 129

4.5 Pressurised liquid extraction (PLE) 131

4.5.1 Introduction 131
4.5.2 Analytical procedure and critical parameters 131
4.5.3 Published applications 135
4.5.4 Discussion and future perspectives 138

4.6 Hot water extraction 138

4.7 Supercritical fluid extraction (SFE) 141

4.7.1 Introduction 141
4.7.2 Instrumentation and analytical procedure 141
4.7.3 Critical analytical parameters 143
4.7.4 Applications 148
4.7.5 Discussion and future perspectives 154

4.8 Other energy-assisted extraction techniques 155

4.8.1 Microwave-assisted extraction (MAE/FMAE) 155
4.8.2 Sonicaction-assisted extraction 160

4.9 Adsorptive extraction techniques 161

4.9.1 Solid phase extraction (SPE) 162
4.9.2 SPS with immonosorbents 163
4.9.3 SPE with molecular-imprinted polymers (MISPE) 193

4.10 Micro-extraction techniques involving liquid–liquid partitioning 198

4.10.1 Solid-phase micro-extraction (SPME) 199
4.10.2 Stir bar sorptive extraction (SBSE) 208
4.10.3 Other microtiration extraction techniques 210
4.10.4 Membrane-assisted micro-extraction 212

4.11 Strategies for the introduction of new analytical approaches 214

4.11.1 Interdependence of analytical steps 216
4.11.2 Trend for more analytical efficiency 219

References 222
Chapter 5. Sample introduction techniques

Silvia Lacorte, Amadeo R. Fernández-Alba

5.1 Introduction ... 233
5.2 Outline of the analytical approach 235
5.3 Injection techniques for gas chromatography 237
5.3.1 Split/splitless injection 237
5.3.2 On-column injection 244
5.3.3 Programmable temperature vaporiser 245
5.3.4 On-line LC–GC (solid-phase extraction and gel-permeation chromatography) 249
5.3.5 Solid-phase micro-extraction 251
5.4 Injection techniques for high performance liquid chromatography 255
5.4.1 Loop injection 255
5.4.2 Capillary electrophoresis coupled to LC 259
5.4.3 SPME coupled to HPLC 261
5.4.4 On-line solid-phase extraction coupled to LC 261
5.5 Conclusions ... 264

References .. 265

Chapter 6. GC–MS: I. Basic principles and technical aspects of GC–MS for pesticide residue analysis

Hans-Jürgen Stan

6.1 Introduction and scope 269
6.2 The mass spectrum 269
6.3 Structural information 271
6.3.1 The molecular ion 272
6.3.2 Isotopic peaks 272
6.3.3 Fragmentation reactions 273
6.3.4 Interpretation 276
6.4 Chemical ionisation 279
6.4.1 Positive ions 280
6.4.2 Negative ions 281
6.5 Complementary information 282
6.6 High-resolution mass spectrometry (HRMS) 286
6.7 Tandem mass spectrometry (MS/MS) 287
6.8 Multi-residue screening for pesticides applying GC–MS .. 291
6.8.1 Introduction to multi-residue screening for pesticides with GC–MS 291
Contents

6.8.2 The GC–MS instrument .. 292
6.8.3 The mass spectrometer ... 293
6.9 Compound identification ... 299

6.9.1 Mass spectral libraries .. 299
6.9.2 Background ions .. 300
6.9.3 Background subtraction ... 301
6.9.4 Library search ... 301
6.9.5 Manual verification: use of RIC with background subtraction 302
6.9.6 Screening for pesticides with full scan ... 304
6.9.7 AMHS from NIST .. 306
6.9.8 Confirmation and quantitative determination with SIM .. 308
8.9.9 Target compound analysis with SIM 309

6.10 Automated screening applying full-scan acquisition 313
6.19.1 Automated evaluation of full-scan acquisition data applying AuPost 314
6.10.2 Retention time locking (RTL) 319
6.11 Analysis of pesticides with GC–MS/MS 320
6.12 Pesticide residue analysis based on CI in negative and positive mode 322
6.13 GC–TOP-MS .. 326
6.14 New approaches in GC–MS .. 333
6.14.1 Reactively heated GC–MS 333
6.14.2 Comprehensive two-dimensional gas chromatography with TOP-MS 334
6.14.3 Fast supersonic GC–MS 334
References .. 335

Chapter 7. GC–MS. III: Applications for pesticide analysis in food 339
Ana Agiera, Andre de Kok
7.1 Introduction and scope .. 339
7.2 Quadrupole versus ion trap .. 341
7.3 Pesticide identification ... 342
7.3.1 Selected ion monitoring (SIM) 344
7.3.2 Positive and negative chemical ionization ... 349
7.3.3 Tandem mass spectrometry 352
7.4 Pesticide quantification ... 354
7.5 New trends in GC–MS pesticide residue analysis 365
References .. 365
Contents

Chapter 8. LC–MS. I: Basic principles and technical aspects of LC–MS for pesticide analysis. 369

E. Michael Thurman, Imma Ferrer, Amadeo Fernández-Alba

8.1 Introduction and scope 369
8.2 Ionisation in LC–MS 371
8.3 The mass spectrum 372
8.4 Structural information 374
8.4.1 The protonated or deprotonated molecule (molecular ion) 374
8.4.2 Isotopic peaks 375
8.4.3 Fragmentation reactions 376
8.4.4 Interpretation 376
8.5 Atmospheric pressure ionisation, positive and negative ion. 378
8.5.1 Positive ions 378
8.5.2 Negative ions 378
8.5.3 Complementary information 379
8.6 LC–MS quadrupole instruments 380
8.7 High resolution MS 380
8.7.1 LC–MS TOF 380
8.7.2 Q-TOF/MS 383
8.8 Tandem mass spectrometry (MS/MS) 384
8.8.1 Triple quadrupole MS/MS 386
8.8.2 Quadrupole ion-trap MS/MS 389
8.9 Comparison of MS/MS instruments 391
8.10 Operational factors that affect LC–API–MS responses and fragmentation. 392
8.10.1 Source selection. 392
8.10.2 Eluent composition. 394
8.11 Compound identification 396
8.11.1 Target screening 396
8.11.2 Non-target screening, identification of spectra and libraries, and the future in LC/MS spectra of pesticides in food. 398

References 400

Chapter 9. LC–MS. II: Applications for pesticide food analysis. 403

Imma Ferrer, Joaquín Abián, Amadeo R. Fernández-Alba

9.1 Introduction and scope 403
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Electro spray and atmospheric pressure chemical ionisation (LC-API-MS) interfaces</td>
<td>409</td>
</tr>
<tr>
<td>9.3</td>
<td>Interface robustness</td>
<td>410</td>
</tr>
<tr>
<td>9.4</td>
<td>Identification and confirmation</td>
<td>412</td>
</tr>
<tr>
<td>9.5</td>
<td>Fragment generation in target and non-target analysis</td>
<td>412</td>
</tr>
<tr>
<td>9.6</td>
<td>Matrix effects</td>
<td>418</td>
</tr>
<tr>
<td>9.7</td>
<td>Quantitation</td>
<td>423</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Sensitivity and reproducibility</td>
<td>423</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Calibration and robustness</td>
<td>424</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Matrix effects</td>
<td>426</td>
</tr>
<tr>
<td>9.8</td>
<td>Future trends in LC-MS pesticide residue analysis</td>
<td>433</td>
</tr>
</tbody>
</table>

Chapter 10: Proficiency tests in pesticide residue analysis

10.1 Introduction

10.2 Guidelines for proficiency tests

10.3 Required characteristics of the test material

10.4 The protocol for the proficiency test

10.5 The z-score

10.6 Statistical treatment of data

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6.1</td>
<td>Conventional approach for data analysis</td>
<td>451</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Robust statistics for data analysis</td>
<td>452</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Robust statistics according to the SLMP</td>
<td>453</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Robust statistics according to the Qn/median method</td>
<td>455</td>
</tr>
<tr>
<td>10.6.5</td>
<td>Limitations of conventional statistics regarding the detection of outliers</td>
<td>456</td>
</tr>
</tbody>
</table>

10.7 The results from PT 3 | 457 |

10.8 Using summed squared scores for data evaluation | 459 |

10.9 An alternative approach based on the factor concept | 463 |

10.10 Conclusions

References

Glossary

List of Abbreviations

Subject Index