Contents

Contributors to Volume 67	xv
Series Editor's Preface	xix
Volume Editor's Preface	xxi

1.	Analytical Methods for the Measurement of Legacy
	and Émerging Persistent Organic Pollutants in Complex
	Sample Matrices

Ying Guo and Kurunthachalam Kannan

1.	Introduction	1
2.	Analytical Methods	4
	2.1 Sampling	4
	2.2 Transport and Storage of Samples	11
	2.3 Analysis of POPs in Environmental Matrices	14
	List of Abbreviations	40
	References	40

2. Bioanalytical Approaches to Understanding Toxicological Implications of Mixtures of Persistent Organic Pollutants in Marine Wildlife

Ling Jin, Caroline Gaus and Beate I. Escher

1.	Marine Wildlife Health at Risk	58
	1.1 Environmental Threats	58
	1.2 Increasing Morbidity and Mortality	59
2.	Role of POPs in Marine Wildlife Health	60
	2.1 POP Exposure: Status and Trend	60
	2.2 Toxicological Implications of POPs	62
	2.3 Need for Mechanistic and Quantitative Understanding of	
	Exposure and Effect	62
3.	Current Approaches to Evaluating Mixture Effects of	
	POPs in Marine Wildlife	63
	3.1 Exposure-Driven Approaches	63
	3.2 Effect-Driven Approaches	69
	3.3 Methodological Gaps and Recommendations	77
4.	Conclusion	78
	Acknowledgments	79
	References	79

v

VI Contents	vi	Contents
-------------	----	----------

3. Fast Analytical Techniques Based on Microextraction

Ruifen Jiang and Gangfeng Ouyang

1.	Introduction	85
2.	Solid Phase Microextraction	86
	2.1 Selection of Extraction Fiber	94
	2.2 Selection of Extraction Mode	97
	2.3 Selection of a Quantification Method	99
	2.4 Method Validation	101
3.	Liquid Phase Microextraction	102
4.	Single Drop Microextraction	111
	4.1 Hollow Fiber LPME	112
	4.2 Dispersive Liquid–Liquid Microextraction	113
5.	Other Microextraction Techniques	118
6.	Summary of Microextraction for POPs Analysis	123
	List of Abbreviations	124
	References	125

4. Application of Passive Sampling Techniques in Measurement of HOCs in Aquatic Environments

Lian-Jun	Bao and	Eddy Y	/. Zeng
----------	---------	--------	---------

1.	Introduction	135
2.	Passive Sampling Devices in Field Application	138
	2.1 Semipermeable Membrane Device	138
	2.2 SPME Fiber	138
	2.3 LDPE and POM Membranes	140
3.	Field Application of Passive Samplers	141
	3.1 Measurement of Freely Dissolved or Gaseous HOCs	142
	3.2 Measurement of Site-Specific Partition Coefficients	144
	3.3 Bioavailability Assessment	145
	3.4 Intercompartmental Flux Measurement	146
	3.5 Quantitation Methods in Field Passive Sampling	147
4.	Factors Impacting Passive Sampling	152
	4.1 Temperature	152
	4.2 Salinity	153
	4.3 Other Factors	154
5.	Conclusions	154
	References	154

5. Assessment of Sediment Toxicity with SPME-Based Approaches

Jing You, Huizhen Li and Michael J. Lydy

Introduction	161
2. Bioavailability in Sediment Quality Assessments	
Calibration of Passive Sampling Methods	
3.1 Equilibrium Sampling	166
3.2 Kinetically Controlled Sampling	167
	Introduction Bioavailability in Sediment Quality Assessments Calibration of Passive Sampling Methods 3.1 Equilibrium Sampling 3.2 Kinetically Controlled Sampling

4	Introduction of Solid Phase Microextraction (SPME)	169
	4.1 Development of SPME	169
	4.2 Types of SPME	169
5.	Application of SPME in Sediment Toxicity Assessment	171
	5.1 Overview	171
	5.2 Measurement Endpoints	182
	5.3 Toxicity of Chemical Mixtures	184
6.	Scientific Merits of Using Passive Sampling for Evaluating	
	Bioavailability and Toxicity	186
7.	Conclusions and Perspectives	186
	Acknowledgments	187
	References	187

6. Pharmaceuticals and Personal Care Products (PPCPs) in the Environment and Their Removal from Wastewater through Constructed Wetlands

Cristina Ávila and Joan García

1.	Intr	oduction	196
	1.1	Emerging Organic Contaminants	198
	1.2	Sources and Fate of PPCPs in the Environment	203
	1.3	Toxicity and Evaluation of Risks Associated to PPCPs	208
	1.4	Occurrence and Fate of PPCPs in Conventional WWTPs	210
	1.5	Removal of PPCPs through Tertiary and Advanced	
		Treatment Technologies	215
2.	CW	s: A Decentralized Wastewater Treatment Ecotechnology	216
	2.1	Horizontal Subsurface Flow Constructed Wetlands	218
	2.2	Vertical Subsurface Flow Constructed Wetlands	219
	2.3	Free Water Surface Wetlands	220
	2.4	Hybrid Systems	221
3.	Ren	noval and Behavior of PPCPs in CWs for Urban	
	Was	stewater Treatment	221
	3.1	Design and Operational Factors Affecting the Removal	
		of PPCPs in CWs	225
	3.2	Behavior of PPCPs in Hybrid CW Systems	229
	3.3	Concluding Remarks	231
	Refe	erences	232

7. Occurrence and Fate of Pharmaceuticals and Personal Care Products in Wastewater

Trine Eggen and Christian Vogelsang

1.	Intro	oduction	246
2.	Fact	ors that Influence the Influent Concentrations of PPCPs to	
	Was	tewater Treatment Plants	247
	2.1	Use Patterns and Pathways to Wastewater	257
	2.2	Changes and Losses during Transport to the WWTPs	262
	2.3	Sampling and Analysis for Pharmaceuticals	263

viii Contents

3.	Fact	ors Influencing the Fate of PPCPs in Primary and	
	Sec	ondary Wastewater Treatment Processes	263
	3.1	Primary and Secondary Wastewater Treatment	264
	3.2	Removal of PPCPs by Biodegradation	265
	3.3	Removal of PPCPs by Sorption	269
	3.4	Evaporation of PPCPs	272
4.	Fact	ors Influencing the Fate of PPCPs in Tertiary Wastewater	
	Trea	itment Processes	272
	4.1	Membrane Filtration (MF, UF, Nanofiltration, and Reverse	
		Osmosis)	273
	4.2	Adsorption Processes (GAC and PAC)	274
	4.3	Advanced Oxidation Processes (Ozonation and UV/H ₂ O ₂)	276
5.	The	PPCPs Properties and the Influence of Removal	
	duri	ng WWTPs	283
6.	Con	cluding Remarks	289
	Refe	erences	289

8. Atmospheric Deposition of POPs: Implications for the Chemical Pollution of Aquatic Environments

Javier Castro Jiménez, Jordi Dachs and Steven J. Eisenreich

1.	Introduction	295
2.	Atmospheric Deposition of POPs and Relevance	
	2.1 Main Processes	297
	2.2 Relevance in Aquatic Environments	301
	2.3 Influence on POPs Bioavailable Reservoirs and Exposure	317
3.	Final Remarks	318
	References	319

9. Electronic Waste: A New Source of Halogenated Organic Contaminants

Hong-Gang Ni and Eddy Y. Zeng

1.	Introduction	323
2.	Amounts of Globally Generated E-Waste	324
3.	Halogenated Organic Contaminants from E-Waste	327
	3.1 Brominated Flame Retardants	328
	3.2 Dioxins and Dioxin-like Compounds	329
	3.3 Halogenated Polycyclic Aromatic Hydrocarbons	330
4.	Other Toxics in E-Waste	331
	4.1 Heavy Metals	331
	4.2 Organic Pollutants	332
5.	Inventories of HOCs in E-Waste	333
6.	Uncertainties and Limitations	341
	Acknowledgments	342
	References	342

10. Occurrence and Human Health Risk of Emerging Organic Contaminants in E-Waste

David O. Carpenter

1.	Introduction	347
2.	Organic Compounds in E-Waste	
3.	Routes of Exposure to Organic Compounds in E-Waste	349
4.	Health Effects of E-Waste	352
	4.1 Cancer	352
	4.2 Thyroid Dysfunction	352
	4.3 Cognitive Function	353
	4.4 Behavioral Effects	353
	4.5 Endocrine Disruption	353
	4.6 Immune Function	354
	4.7 Respiratory Symptoms	354
	4.8 Fetal Growth and Development	355
	4.9 Diabetes	355
	4.10 Cardiovascular Disease	355
5.	The Importance of Exposure to Chemical Mixtures	355
6.	Conclusions	358
	References	358

11. Long-Range and Regional Atmospheric Transport of POPs and Implications for Global Cycling

Kimberly J. Hageman, Christian Bogdal and Martin Scheringer

	1.	Introduction	363
	2.	Understanding Atmospheric Transport Potential	365
	3.	Processes Controlling the Latitudinal and Long-term	
		Distribution of POPs on the Global Scale	368
	4.	Long-Range and Regional Atmospheric Transport of	
		POPs to Alpine Regions	371
	5.	Approaches for Determining POP Sources in Remote	
		Ecosystems	375
	6.	Conclusions and Perspectives	380
		References	381
12.	O Re	ccurrence and Ecological Risk of Halogenated Flame etardants (HFRs) in Coastal Zones	
	Jar	nes C.W. Lam and Paul K.S. Lam	
	1.	Overview of Halogenated Flame Retardants	390

	Overview of	Theogenated Thanks Retardants	350
	1.1 Polybro	minated Diphenyl Ethers	390
	1.2 Hexabr	omocyclododecanes	390
	1.3 Haloger	nated PBDE Alternatives	391
2.	Halogenated	PBDE Alternatives in the Environment	393
	2.1 Sedime	nt	393
	2.2 Marine	Mammals	396

x Contents

3.	3. Potential Risk of Halogenated PBDE Alternatives to		
	Marine Mammals	399	
	3.1 Hazard Quotient Risk Assessment	401	
	3.2 Probabilistic Risk Assessment	402	
	3.3 Risk Due to HBCDs	403	
4.	Conclusions	406	
	Acknowledgments		
	References	406	

13. Atmospheric Long-Range Transport of Persistent Organic Pollutants (POPs) into Polar Regions

Roland Kallenborn, Hayley Hung and Eva Brorström-Lundén

Background	412
1.1 Atmospheric Monitoring	412
Importance of POP Monitoring in Polar Regions	415
The Principles of Atmospheric POP Transport to and	
within Polar Regions	415
Determination of Source Regions by Back Trajectory Modeling	419
POPs in the Arctic Atmosphere	419
5.1 The Arctic as Deposition Area for POPs	420
5.2 PCBs as an Indicator POP in the Arctic Atmosphere	421
POPs in the Antarctic Atmosphere	423
Arctic Atmospheric POPs and Climate Change	425
Conclusions and Perspectives	427
Acknowledgments	428
References	428
	Background 1.1 Atmospheric Monitoring Importance of POP Monitoring in Polar Regions The Principles of Atmospheric POP Transport to and within Polar Regions Determination of Source Regions by Back Trajectory Modeling POPs in the Arctic Atmosphere 5.1 The Arctic as Deposition Area for POPs 5.2 PCBs as an Indicator POP in the Arctic Atmosphere POPs in the Antarctic Atmosphere Arctic Atmospheric POPs and Climate Change Conclusions and Perspectives Acknowledgments References

14. Bioaccumulation and Biotransformation of Brominated Flame Retardants

Liesbeth Weijs, Alin C. Dirtu, Govindan Malarvannan and Adrian Covaci

1.	Introduction	433
2.	Bioaccumulation of BFRs in Aquatic Organisms and Food Chains	436
	2.1 Bioaccumulation	436
	2.2 Biomagnification	455
3.	Bioaccumulation of BFRs in Terrestrial Organisms	456
	3.1 Bioaccumulation	457
	3.2 Biomagnification	461
4.	Transformation Products of BFRs	462
	4.1 Transformation Products of BFRs in Abiotic Matrices	462
	4.2 Biotransformation Pathways of BFRs	473
5.	Concluding Remarks and Future Perspectives	479
	Acknowledgments	479
	References	479

15. Bioavailability of Persistent Organic Pollutants in Soils: Concept, Analytical Tools, and Application in the Risk Assessment

Bilgees M. Adedigba and Kirk T. Semple

1.	Introduction	493
2.	Definitions: Bioavailability and Bioaccessibility of Organic	
	Contaminants in Soil	495
3.	Factors Controlling the Bioavailability and Bioaccessibility	
	of Organic Contaminants in Soil	496
4.	Approaches for Measuring Bioaccessibility of Organic	
	Contaminants in Soil	497
	4.1 Organic Solvent Extraction	498
	4.2 Supercritical Fluid Extraction	498
	4.3 Solid-Phase Extraction	499
	4.4 Aqueous-Based Cyclodextrin Extraction	502
5.	Conclusions	502
	Acknowledgments	504
	References	504

16. Benzotriazoles: History, Environmental Distribution, and Potential Ecological Effects

Mark G. Cantwell, Julia C. Sullivan and Robert M. Burgess

1.	Introduction	513
2.	Chemical and Physical Properties of BZTs	514
3.	Major Uses and Applications	519
4.	Estimates of BZT Production	519
5.	Analytical Methods for Measurement in Environmental	
	Matrices	520
6.	Environmental History and Distribution of BZTs	522
	6.1 UV-Stabilizing BZTs	522
	6.2 Anticorrosive BZTs	527
7.	Fate of BZTs during Domestic Wastewater Treatment	529
8.	Bioaccumulation and Aquatic Toxicity	531
9.	Persistence of BZTs under Environmental Conditions	540
10.	Summary	541
	Acknowledgments	542
	References	542

17. QSARs on the Thyroid Hormone Effects of Polybrominated Diphenyl Ether (PBDE) Derivatives

Fei Li, Xianhai Yang, Jingwen Chen and Felichesmi Lyakurwa

1.	Thy	roid Hormone Effects of Polybrominated Diphenyl Ethers	548
	1.1	Thyroid Hormones and Their Functions	548
	1.2	Thyroid-Disrupting Chemicals: Effects and Mechanism	549
	1.3	THD Assays	567

2.	Brief Introduction on QSARs	568	
3.	QSAR Models for hTRB and hTTR		
	3.1 QSARs on Hormone Activity of HO-PBDEs on hTRβ	574	
	3.2 QSARs for Substituted Phenolic Compounds Binding		
	with hTTR	577	
4.	Conclusions		
	Acknowledgments		
	References		
Th	e Toxicity of Persistent Organic Pollutants to Aqu	uatic	

18. The Toxicity of Persistent Organic Pollutants to Aquatic Organisms

1.	Intro	oduction	588
2.	PCB	s and Polychlorinated Terphenyls	589
	2.1	Toxicity of PCBs to Invertebrates	591
	2.2	Toxicity of PCBs to Fish	592
	2.3	Toxicity of PCBs to Amphibians	593
	2.4	Toxicity of PCBs to Phytoplankton	594
3.	Dio	xins and Furans	595
	3.1	Toxicity of Dioxins and Furans to Invertebrates	595
	3.2	Toxicity of Dioxins and Furans to Fish	596
	3.3	Toxicity of Dioxins and Furans to Amphibians	597
4.	Bro	minated Flame Retardants	597
	4.1	Polybrominated Diphenyl Ethers	598
	4.2	Polybrominated Biphenyls	600
	4.3	Hexabromocyclododecane	601
	4.4	Tetrabromobisphenol A	602
	4.5	Polybrominated Dibenzo-p-Dioxins and Polybrominated	
		Dibenzofurans	602
5.	Perf	luorinated Chemicals	603
	5.1	Perfluorooctane Sulfonic Acid	603
	5.2	Perfluorooctanoate	605
6.	Con	clusions	605
	Refe	erences	606

Li Chen, Lucy Li and Yunhui Zhang

1. 2.	Introduction Assessment of Exposure to Polybrominated Dinkenyl			
	Ethers via Inhalation and Diet in China			
	2.1	Data Sources and Research Methods	616	
	2.2	GIS Mapping of the Data	617	
	2.3	Regional Exposure Assessment of PBDEs in China	617	
	2.4	Data Analysis	617	

	2.5	Geographic Distributions and Environmental			
		Concentrations of PBDEs Contamination in China	618		
	2.6	Estimated PBDEs Daily Dietary Intake	623		
3.	Asse	essment of Human Exposure to PBDEs	623		
4.	Development of a Reference Dose for BDE-47, -99, and -209				
	Usir	ng Benchmark Dose Methods	626		
	4.1	BDE-47 Reproductive and Developmental Endpoints	630		
	4.2	BDE-99 Thyroid Endpoints	632		
	4.3	Reproductive and Developmental Endpoints	633		
	4.4	BDE-209 Neurobehavior Endpoints	633		
5.	Summary				
	Acknowledgments				
	References				

641