CONTENTS

CHAPTER 1 INTRODUCTION	4
CHAPTER 2 PRINCIPLES OF RETENTION AND COLUM	N SELECTIVITY
2.1 Basic principles	5
2.2 Theory of column selectivity	11
2.3 Column selectivity in practice	20
CHAPTER 3 IDENTIFICATION BASED ON RETENTION	
3.1 Retention coincidence	38
3.2 Retention correlation	46
3.3 The presentation of retention data	57
3.4 Identification by means of the Kovats index	60
CHAPTER 4 SELECTIVE ABSTRACTION AS A MEANS (DF IDENTIFICATION
4.1 Complete abstraction	66
4.2 Pre-column partition	79
CHAPTER 5 TECHNIQUES OF IDENTIFICATION INVOI	LVING CHEMICAL
MODIFICATION OF THE SAMPLE	
5.1 Functional group analysis	86
5.2 Ozonolysis	92
5.3 Gas chromatography of derivatives: Peak shift techniques	95
5.4 Hydrogenation and dehydrogenation	101
5.5 Carbon skeleton chromatography	103
5.6 Reaction rate methods	105
CHAPTER 6 PYROLYSIS GAS CHROMATOGRAPHY AN	D OTHER DEGRADATIVE
METHODS OF IDENTIFICATION	
6.1 General considerations	111
6.2 Pyrolysis units	112
6.3 Pyrolysis gas chromatography as a means of identification	117
6.4 Photolysis gas chromatography	130
CHAPTER 7 MEASUREMENT OF MOLECULAR WEIGH	T IN GAS CHROMATOGRAPHY
7.1 Microgravimetric methods	137
7.2 Measurement of number of moles	139
7.3 Gas-density detector	142

CHAPTER 8 IDENTIFICATION FROM DETECTOR RESPONSE	
8.1 Detector response	152
8.2 Dual-detector systems	180
CHAPTER 9 PEAK TRAPPING	
9.1 Physical background to trapping	191
9.2 Types of trap	198
CHAPTER 10 INFRARED AND OTHER SPECTROSCOPIC TECHNIQUES OF	
IDENTIFICATION	
10.1 Infrared spectroscopy	211
10.2 Ultraviolet spectroscopy	225
10.3 Nuclear magnetic resonance	226

CHAPTER 11 COMBINED GAS CHROMATOGRAPHY AND MASS SPECTROMETRY (GC-MS)

11.1	Limitations and advantages of GC-MS	229
11.2	Important features of the mass spectrometer	235
11.3	Sample transfer from GC to MS	244
11.4	Computerised GC-MS	256