Ref. 547.2 CAR 3rd ed

CONTENTS

1. Formation of carbon-carbon single bonds	1
1.1 Alkylation: importance of enolate anions	1
1.2 Alkylation of relatively acidic methlene groups	4
1.3 γ-Alkylation of 1,3-dicarbonyl compounds; dianions in synthesis	8
1.4 Alkylation of ketones	12
1.5 The enamine and related reactions	26
1.6 Alkylation of α – thio and α –seleno carbanions	38
1.7 Umpolung (dipole inversion)	41
1.8 The aldol reaction	48
1.9 Allylic alkylation of alkenes	63
1.10 The dihydro-1,3-oxazine synthesis of alsdehydes and ketones	70
1.11 Coupling of organonickel and organocopper complexes	73
1.12 Reactions of lithium organocuprates: copper-cata-lysed reactions of Grignard reagents	78
1.13 Synthetic applications of carbenes and carbenoids	87
1.14 Formation of carbon-carbon bonds by addition of free radicals to alkenes	97
1.15 Some photocyclisation reactions	104
2. Formation of carbon-carbon double bonds	111
2.1 β-Elimination reactions	111
2.2 Pyrolytic syn eliminations	115
2.3 Sulphoxide-sulphenate rearrangement; synthesis of allyl alcohols	124
2.4 The Wittig and related reactions	144
2.5 Alkenes from sulphones	144
2.6 Decarboxylation of β-lactones	146
2.7 Stereselective synthesis of tri-and tetea- substituted alkenes	148
2.8 Fragmentation reactions	156
2.9 Oxidative decarboxylation of carboxylic acids	159
2.10 Aldenes from arylsulphonythydrazones	162
2.11 Stereospecific synthesis from 1,2-diols	165
2.12 Claisen rearrangement of allyl vinyl ethers	167
2.13 Reductive dimerisation of carbonyl compounds	180
3 The Diels-Alder and related reactions	184
3.1 General	184
3.2 The dienophile – heterodienophiles, oxygen as a dienophile	184
3.3 The diene – acylic dienes, heterodienes, 1,2 dimethylenecycloalkanes, vinylcycloalkenes and	
dimethylenes, aromatic hydrocarbons, cyclic dienes, cyclopentadienones and ortho-quinones,	
furans	198

3.4 Intramolecular Diels –Alder reactions	215
3.5 The retro Diels-Alder reaction	219
3.6 Catalysis by Lewis acids	221
3.7 Regiochemistry of the Diels-Alder reaction	225
3.8 Stereochemistry of the Diels-Alder reaction	229
3.9 Asymmetric of the Diels-Alder reaction	237
3.10 Mechanism of the Diels-Alder reaction	240
3.11 Photosensitised Diels-Alder reactions	243
3.12 The ene reaction	244
3.13 Cyclo-addition reactions with allyl cations and allyl anions	253
3.14 1,3-Dipolar cyclo-addition reactions	256
4. Reactions at unactivated C-H bonds	263
4.1 The Hoffmann-Loeffler-Freytag reaction	264
4.2 Cyclisation reactions of nitrenes	268
4.3 The Barton reaaction and related processes – photoly sis of organic nitrites and hypohalites,	
photolysis of N-nitrosoamides	269
4.4 Reaction of monohydric alcohols with lead tetraacetate	279
4.5 Miscellaneous reactions –unsaturated alcohols from hydroperoxides, cyclobutanols by photolysis	
of ketones, long-range functionalisation of unactivated carbons on the steroid nucleus	280
5. Synthetic applications of organoboranes and organosilanes	288
5.1 Hydroboration	288
5.2 Reactions of organoboranes-protonolysis, oxidation, enantioselective synthesis of secondary	
alcohols fromalkenes, isomerisation and cyclisation of alkylboranes	294
5.3 Formation of carbon-carbon bonds-carbonylation of organoboranes, reaction with diazo	
compounds	302
5.4 Reactions of alkenlboranes and trialkylalkynyl-borates	312
5.5 Free-radical reactions of organoboranes	315
5.6 Applications of organosilicon compounds in synthesis-protection of functional groups, trimethylsilyl	
ethers, silyl enol ethers	317
5.7 Alkenylsilanes and allylsilanes	324
5.8 Control of rearrangement of carbonium ions by silyl ethers, silyl enol ethers	317
5.7 Alkenylsilanes and allylsilanes	324
5.8 Control of rearrangement of carbonium ions bysilicon – the β-effect	333
5.9 α-Silyl carbanions	335
5.10 β-Silycarbonyl compounds	339
5.11 Trimethylsilyl cyanide	341
5.12 Trimethylsilyl iodide and trimethylsilyl triflate	342
6. Oxidation	344
6.1 Oxidation of hydrocarbons	346
6.2 Oxidation of alcohols-chromic acid, chromiumVI oxide-pyridine complexes, manganeseIV	

oxide, silver carbonate, oxidation via alkoxysulponium salts, other methods	251
6.3 Oxidation of carbon-carbon double bonds – diols, epoxides, enantioselective	
of allylic alcohols (Sharpless epoxidation), diastereoselective epoxidation of	
homoallylic alcohols, synthetic reactions of epoxides, ozonolysis	364
6.4 Photosensitised oxidation of alkenes	392
6.5 Palladium-catalysed oxidation of alkenes	397
6.6 Oxidation of ketones-conversion into αβ-unsaturated ketones, Baeyer-Villiger oxidation	398
6.7 Oxidations with ruthenium tetroxide	407
6.8 Oxidations with thallium(III) nitrate	408
7. Reduction	
7.1 Catalytic hydrogenation-the catalyst, selectivity of reduction, reduction of functional groups,	
Stereochemistry and mechanism, homogeneous hydrogenation	411
7.2 Reduction by dissolving metals-reduction with metal and acid, reduction of carbonyl compounds,	
reduction), reductive fission of alcohols and holides	431
7.3 Reduction by hydride-transfer reagents-aluminium alkoxides, lithium aluminium hydride and sodium	
borohydride, lithium hydride-aluminium chloride reagents, di-isobutylaluminium hydride, sodium	
cyanoborohydride, trialkyiborohydrides	457
7.4 Reductions with borane and dialkylboranes	478
7.5 Other methods – Wolff-Kishner reduction, desulphurisation of thio-acetals, di-imide, low-valent	
titanium species, trialkyltin hydrides, trialkylsilanes	482
Refernces	492
Index	515