

Contents

	Page
Oral Presentations Plenary lectures	1 450
The Role of the Maillard Reaction in Vivo A.Cerami	1–10
The Maillard Reaction in Foods G. Rizzi	11-19
Maillard Reaction and Drug Stability V.Kumar and G.S. Banker	20-27
Anthropology of the Maillard Reaction L. De Bry	28-36
Chemistry	
The Maillard Reaction of Disaccharides M. Pischetsrieder and T. Severin	37-42
Evaluation of a Lysine–Glucose Maillard Model System using 3 Rapid Analytical Methods M.B. Assoumani , D. Maxime and N.P. Nguyen	43-50
Mechanistic Studies on the Formation of Pyrroles and Pyridines from [1– ¹³ C]– D–Glucose and [1– ¹³ C]– D–Arabinose R. Tressl, E. Kersten, C. Nittka and D. Rewicki	51-60
Mechanistic Studies on the Formation of Maillard Products from [1– ¹³ C]–D–Fructose D. Rewicki, E. Kersten, B. Helak, C. Nittka and R. Tressl	61-68
Investigation of the Acyclic Forms of Reducing Sugars and Amadori Products by FTIR Spectroscopy V.A. Yaylayan, A.A. Ismail and A. Huyghues–Despointes	69-74
Naturally Occurring Phenolic Compounds as Inhibitors of Free Radical Formations in the Maillard Reaction S.M. Djilas and B.Lj. Milié	75–81
New Insight into the Mechanism of the Maillard Reaction from Studies of the Kinetics of its Inhibition by Sulfite BL. Wedzicha, I.R. Bellion and G. German	82-87

Chemiluminescence Developed at An Early Stage of the Maillard Reaction M. Namiki, M. Oka, M. Otsuka, T. Miyazawa, K. Fujumoto, K. Maniki. N. Kanamori and N. Suzuki	88–94
Effectsof Aspirin on Glycation, Glycoxidation and Crosslinking of Collagen M-X •Fu, S.R. Thorpe and J.W. Baynes	95–100
An Investigation on in vivo and in vitro Glycated Proteins by Matrix Assisted Laser Desorption/Ionization Mass Spectrometry A. Lapolla , D. Fedele, C. Gerhardinger, L. Baldo, G. Crepaldi, R. Seraglia, S. Catinella and P. Traldi	101–105
The Formation of some Pyrido-[3,4-d]-imidazoles by Maillard Reaction U.S. Gi and W. Baltes	106-113
Alteration of Skin Surface Protein with Dihydroxyacetone: A useful Application of the Maillard Browning Reaction J.A. Johnson and R.M. Fusaro	114–119
Colour development in an Intermediate Moisture Maillard Model System J.M. Arnes, L. Bates and D.B. MacDougall	120–125
Food	
Release of Ammonia from Peptides and Proteins and Their Effectson Maillard Flavor Generation CT. Ho, J. Zhang, HI. Hwang and W.E. Riha III	126–130
The Reaction Kinetics for the Formation of Isovaleraldehyde, 2-Acetyl-1-pyrroline , di(H)di(OH)-6-Methylpyranone, Phenylacetaldehyde, 5-Methyl-2-phenyl-2-hexenal and 2-Acetyl furan in Model Systems F. Chan and G.A. Reineccius	131–139
Temperature Effect on the Volatiles Formed from the Reaction of Glucose and Ammonium Hydroxide: A Model System Study C.–K. Shu and B.M. Lawrence	140-146
Incorporation of ¹⁴ C-Glucose into Mutagenic Heterocyclic Amines K. Skog and M. Jagerstad	147–152

Contents xi

The Influence of Temperature and Water Activity on the Formation of Aminoimidazoquinolines and -quinoxa -lines (IQ Compounds) in Meat Products K. Eichner and E. Schuirmann	153-158
Enhancement Of The Gelation Of Food Macromolecules Using The Maillard Reaction And Elevated Temperatures H.J. Armstrong, S.E. Hill and J.R. Mitchell	159-163
Glass Transition and Its Potential Effects on Kinetics of Condensation Reactions and In Particular on Non- Enzymatic Browning M. Karel and M.P. Buera	164-169
Kinetics of the Early Maillard Reaction During Heating of Milk M.A.J.S. Van Boekel and H.E. Berg	170-175
Interpreting the Complexity of the Kinetics of the Maillard Reaction T.P. Labuza	176-181
The Effectof Glass Transition on Maillard Browning in Food Models R. Karmas and M. Karel	182-187
Analysis of Lactose–Protein Maillard Complexes in Commercial Milk Products by Using Specific Monoclonal Antibodies Y. Kato, T. Matsuda, N. Kato and R. Nakamura	188-194
Simultaneous Determination of Protein–Bound Maillard Products by Ion Exchange Chromatography and Photodiode Array Detection T. Henle, A.W. Walter and H. Klostermeyer	195-200
Health	
Catalytic aspects of the Glycation Hot Spots of Proteins S.A. Acharya and P. Nacharaju.	201-206
Examination of Site Specificity of Glycation of Alcohol Dehydrogenase by Computer Modeling D.J. Walton, R.L. Campbell and B.H. Shilton	207-211
Advanced Glycation Dependent Formation of Modified a-Crystallin and High Molecular Weight Aggregates M. Cherian, A. Abraham, S. Swamy-Mruthinti and E.C. Abraham	212-216
Site–Specific and Random Fragmentation of Cu,Zn–Superoxide Dismutase (Cu,Zn–SOD) by Glycation Reaction: Implication of Reactive Oxygen Species N. Taniguchi, T. Ookawa and H. Ohno	217-221

Nonenzymatic Glycation of Type I Collagen: Effects of Aging K.M. Reiser	222–227
Glycosylation–Induced Modifications of Intact Basement Membras.S. Anderson, E.C. Tsilibary and A.S. Charonis	rane 228–234
The Advanced Maillard Reaction in Aging and Age Related–Dis Probed with Pentosidine V.M. Monnier and D.R. Sell	eases 235–243
Immunological Approach to Advanced Glycation End Products of The Maillard Reaction S. Horiuchi and N. Arak i	244-248
Glucose–mediated DNA Damage and Mutations: <i>In Vitro</i> and <i>In</i> A.T. Lee, A. Cerami and R. Bucala	Mvo 249–253
AGE–Receptors and <i>In Vivo</i> Biological Effects of AGEs H. Vlassara	254–261
Cellular Receptors for Advanced Glycation Endproducts A.M. Schmidt and D.M. Stem	262–266
Glycation, Oxidation, and Glycoxidation of Short- and Long-Li Proteins and the Pathogenesis of Diabetic Complications T.J. Lyons	ived 267–273
Pathways of the Maillard Reaction <i>In Vitro</i> and <i>In Vivo</i> D.V. Zyzak, K.J. Wells–Knecht, J.A. Blackledge, J.E. Litchfield, M.C. Wells–Knecht, M–X. Fu, M.S. Feather and J.W. Baynes	274–280
Biomimic Oxidation of Glycated Protein and Amadori Product S. Kawakishi, R.Z. Cheng, S. Sato and K. Uchida	281–285
Advanced Glycosylation of LDL: Role in Oxidative Modification and Diabetic Complications R. Bucala, Z. Makita, T. Koschinsky, A. Cerami and H. Vlassara	n 286–291
The Aldose Reductase Activity in Lens Extracts Protects, but Do Not Prevent, the Glycation of Lens Proteins by L-Threose B.J. Ortwerth, J.A. Speaker and M. Prabhakaram	pes 292–299
Advanced Maillard Reaction in Sugar–Induced Cataract: Studie Molecular Markers R.H. Nagaraj and V.M. Monnier	es with 300–304

Contents xiii

A Receptor Recognizing E-Fructosyllysine in Glycated Albumin S. Krantz, R. Salazar and R. Brandt	305-308
2–Oxoaldehyde Metabolizing Enzymes in Animal Tissues H. Kato, H.S. Shin, Z–Q. Liang, T. Nishimura and F. Hayase	309-313
Ketoaldehyde Detoxification Enzymes and Protection Against the Maillard Reaction D.L. Vander Jagt, L.A. Hunsaker, L.M. Deck, B.B. Chamblee and R.E. Royer	314-318
In Vivo Effects of Aminoguanidine G. Jerums, T. Soulis–Liparota, S. Panagiotopoulos and M.E. Cooper	319-324
Aminoguanidine as an Inhibitor of the Maillard Reaction J. Hirsch and M.S. Feather	325-328
Aminoguanidine Increases Hydrogen Peroxide Formation during Glycation <i>In Vitro</i> P. Ou and S.P. Wolff	329-334
Specific Maillard Reactions Yield Powerful Mutagens and Carcinogens J.H. Weisburger	335-340
Mechanism of the Antimutagenic Effect of Xylose–Lysine Maillard Reaction Products G-C Yen and P-P Hsieh	341-346
Elucidation of 3–Deoxyglucosone Modified Structure in Glycated Proteins F. Hayase, Y. Konishi, H. Hinuma and H. Kato	347-351
Identification of Three New Mutagenic Heterocyclic Amines and Human Exposure to Known Heterocyclic Amines K. Wakabayashi, R. Kurosaka, I.–S. Kim, H. Nukayal, H. Ushiyama, M. Ochiai, K. Fukutome, H. Nagaoka, T. Sugimura and M. Nagao	352–357
Balance Experiments on human volunteers with E-Fructoselysine (FL) and Lysinoalanine (LAL) K. Lee and H.F. Erbersdobler	358-363
Reaction of Cyanide Ion with Glucose: Implications for the Maillard Reaction and its Effect on Thymidylate Synthase Enzyme Activity L. Trézl , L. Hullán , V. Horvath, I. Rusznák , L. T ke, T. Szarvas and Cs. Vida	364-368

Inhibition of Maillard Reaction by Tea Extract in Streptozotocin -treated Rats	369-374
N. Kinae, S. Masumori, S. Masuda, M. Harusawa, R. Nagai, Y. Unno, K. Shimoi and K. Kator	
On the Physiological Aspects of Glycated Proteins In <i>Vivo</i> N.V. Chuyen, N. Utsunomiya and H. Kato	375-379
The Binding of Native and Oxidised Low Density Lipoproteins (LDL) to Collagen: The Effect of Collagen Modification by Advanced Glycosylation End Products W.K. Lee, J. Stewart, J. Bell and M.H. Dominiczak	380-385
Glycated Low Density Lipoproteins are Much More Susceptible to Lipid Peroxidation T. Sakurai, Y. Yamamoto and M. Nakano	386-391
Production and Characterization of Antibodies against Carboxymethyllysine-modified Proteins K.E. Gempel, E.M. Wagner and E.D. Schleicher	392-396
Alterations of Mineral Metabolism and Secondary Pathology in Rats fed Maillard Reaction Products J.M. O'Brien , P.A. Morrissey and A. Flynn	397-401
Symposium Summary	
Research Provides New Insights into Nonenzymatic Browning Reactions	402-408
J.M. O'Brien and T.P. Labuza	
Poster Presentations - Abstracts Chemistry	
Poster Presentations - Abstracts	409
Poster Presentations - Abstracts Chemistry Influence of pH on the Oxygen Consuming Properties of Heat-Treated Glucose-GlycineSystems	409 409
Poster Presentations - Abstracts Chemistry Influence of pH on the Oxygen Consuming Properties of Heat-Treated Glucose-GlycineSystems M. Anese, M. C Nicoli and C.R. Lerici Improvement of Functional Properties of β-Lactoglobulin by Glucose-6-Phosphate Conjugation	

Contents

Diffusion and Maillard Reaction in an Agar–Microcrystalline Cellulose Matrix During Dehydration F. Gogus , B. L. Wedzicha and J. Lamb	411
Adaption of Maillard Reaction on Keratine Type Proteins with a Special Focus on the Reactions of Glucose Based Crown Ethers L. Trezl, P. Bakó, V. Horvath, I. Rusznak and L. Toke	411
Deamination of Basic Amino acid in Protein Using Active Carbonyl Compounds Produced by Maillard Reaction S. Gopalan, A.T. Gracy and A. Srinivasan.	412
Determination of Ne-Carboxymethyllysine (CML) in Heated Model Mixtures and Several Foods J. Hartkopf, U. Albrecht, C. Pahlke, I. Sievert and H.F. Erbersdobler	412
Characterization of Metal Chelating Compounds in Soluble Coffee S. Homma and M. Murata	413
Substrate Specificity Fructosyl-Amino Acid Oxidase and its Application for the Enzymic Detection of Amadori Products T. Horiuchi, T. Kurokawa and N. Saito	413
The Influence of Free Radicals and Oxidized Fats on the Formation of Food Mutagens in a Model System M. Johansson and M. Jagerstad	414
Formation of Oligosaccharide Amadori Compounds and Their Heat Degradation L.W. Kroh	414
Stereo Control of Control of Maltol Formation in Maillard Reaction V. Yaylayan and S. Mandeville	415
A Study on the Structures and Reactivities of Unstable Intermediates of Amino–Carbonyl Reaction by Semi–Empirical Molecular Orbital Method T. Kurata and Y. Otsuka	415
Structures and Reactivities of Reaction Products Formed by the Reaction of L—Ascorbic Acid with an Amino Acid in the Presence of Oxygen T. Kurata, N. Miyake and Y. Otsuka	416
A Preliminary Study on the Products Arising from the Reaction of Protected Lysine and Glucose A. Lapolla, D. Fedele, C. Gerhardinger, L. Baldo, G. Crepaldi, R. Seraglia, S. Catinella, P. Traldi and R. Bertani	416

Cu(II) Chelating Activity of Glucose–Lysine Model Melanoidin G. Moon, M. Murata and S. Homma	417
The Relationship Between the Coloured Compounds Present in the Pressed Liquor of Cane Sugar Manufacture and Those Formed in Maillard Reactions, in Alkaline Degradation of Sugars, and in Caramelisation J. Reramat and H.E. Nursten	417
Evaluation of the Advanced Maillard Reaction in Dried Pasta P. Resmini and L. Pellegrino	418
The Maillard Reaction in Pasta Drying: Study in Model Systems A. SenSidoni , C.M. Pollini, D. Peressini and P. Sari	418
Influence and Impact of Nonenzymic Browning Reaction on Proteins in Milk and in Indigenous Dairy Products of India A. Srinivasan and S. Gopalan	419
Foodstuffs Melanoidines Quantitative Isolation Methods M.J. Kintcheve and T.D. Obretenov	419
Pharmacology/Biochemistry	
Prevention of DM-Complications by Organic Germanium Compounds and Their Mode of Action in Reversible Solubilization of Maillard Products K. Nakamura, K. Nomoto, K. Kariya and N. Kakimoto.	420
Maillard Polymers and Regulation of Activity of Adenylate Cyclase R.D. Huang and M.S. Feather	420
Immunochemical Characterization of the Major Fluorescent Compound Isolated from Advanced Maillard Reaction Products N. Araki and S. Horiuchi	421
Antioxidative Mechanism of Maillard Reaction Products <i>In Vivo</i> N. van Chuyen, N. Utsunomiya and H. Kato	421
Enzymatic Degradation of Glycated-ε-Aminocaproic Acid and Glycated-Lysine by a Mucoid Soil Strain ofps. <i>Aeruginosa</i> C. Gerhardinger, S.M. Marion and V.M. Monnier	422
Triazine Derivatives Formed with Aminoguanidine During Degradation of Glycated Proteins M.A. Glomb. M. Grissom and V.M. Monnier	422

Contents xvii

Evaluation of Urinary Excretion of Fructoselysine in Different Groups of Diabetic Patients A. Gross and H.F. Erbersdobler	423
Phosphorylated Amadori Products in Mammalian Kidneys F. Kappler, B. Su, B.S. Szwergold, and T.R. Brown	423
Characterization of Model Melanoidin by Lectin Affinity and Immunochemistry S. Homma, M. Murata, M. Fujii and Y.S. Lee	424
Aldosine, Difunctional Amino Acid Derived from Aldol Crosslink of Elatin and Collagen; Effect of Aging and Two Models of Hyperglycemia F. Nakamura and K. Suyama	424
Ocular Albumin Permeability in Experimental Diabetes: Effects of Aminoguanidine and Inhibitors of Oxidation and Polyol Pathway G. Jerums, T. Lim loon, T. Gin, V. Lee, N. Carroll, S. Panagiotopoulos and H. Taylor	425
Cyclopentenosine, Trifunctional Crosslinking Amino Acid of Elastin and Collagen; Structure, Characterization and Distribution K. Suyama, K. Yamazaki and F. Nakamura	425
Chemistry of Crosslines K. Nakamura, T. Hochi, Y. Nakazawa , Y. Fukunaga and K. Ienaga	426
Aminoguanidine Decreases Atherosclerotic Plaque Formation in the Cholesterol–Fed Rabbit S. Panagiotopoulos, R.C. O'Brien , M.E. Cooper, G. Jerums and R. Bucala	426
Glycation and Inactivation of Rat Aldehyde Reductase, a Major 3–Deoxyglucosone Reducing Enzyme M. Takahashi, J. Fujii, T. Teshima, K. Suzuki, T. Shiba and N. Taniguchi	427
Effect of Glucose and Glycation on Protein Oxidation M.C. Wells-Knecht, MX. Fu, S.R. Thorpe and J.W. Baynes	427
Toxicology/Aging	
Reactivity of Age Collagen in the Radioreceptor Assay for Age Modified Proteins S. Hepburn, W.K. Lee and M.H. Dominiczak	428
Inhibition of Cariogen Glucan Synthesis by Maillard Reaction Product of Beer M. Murata, Y. Nakajima and S. Homma	428

Human Microglobulin Modified with Advanced Glycation End Products in Hemodialysis–Associated Amylodosis Γ. Miyata, R. Inagi, Y. Iida, N. Araki , N. Yamada, S. Horiuchi, N. Taniguchi, T. Kinoshita and K. Maeda	429
Cyto- and Genotoxic Activity of Heat Processed Cooked Products on in-vitro Test System. 5178Y Mouse Lymphoma M. Draganov, M. Kuntcheva, S. Ivanova, N. Popov and Tzv. Obretenov	429
Physiological Significance of Glycation of Myofibrullar Proteins in Mice and Rats, and in Cultured Muscle Cells (16) N. Nishizawa, H. Watanabe and W. Sato	430
Plasma Advanced Glycoxidation Endproduct and Malon–dialdehyde in Maintenance Hemodialysis Patients P. Odetti, L. Cosso, D. Dapino, M.A. Pronzato , G. Noberasco, and G. Gurreri	430
The Changes of Collagen Cross–Links in the Connective Tissues of Guinea Pigs Supplemented with L—Ascorbic Acid M. Otsuka, M. Kim, E. Shimamura, T. Kurata and N. Arakawa	431
Identification of 2–Lactylamido–Guanine (LAG) as a DNA–Advanced Glycosylation Endproduct A. Papoulis, A. Cerami and R. Bucala	431
3–Deoxyglucosone is a Decomposition Product of Fructose–3–Phosphate S. Lal, B. Szwergold, F. Kappler and T.R. Brown	432
Antibodies to Pentosidine and Pentose–Derived Advanced Maillard Products S. Taneda and V. Monnier	432
Existence of Maillard Reaction Products in Tumor Bearing Mice K. Takamiya , E. Tsukamoto and M. Muraga	433
Mesangial and Retinal Microvascular Phenotypic Cell Changes in Response to Glycosylated Matrix Components E.C. Tsilibary, S.S. Anderson, S. Setty, T. Kalfa, M. Gerritsen, Y. Kim and E. Wayner	433
Aldehyde Reductase and Aldose Reductase May Act as Scavengers of Aldosuloses Formed from Glycated Proteins D.J. Walton, T.J. Kubiseski, K.A. Munro , T.G. Flynn and M.S. Feather	434
Subject Index	435