.

•

1

Contents

1	AN I COI		UCTION TO LATEX AND THE PRINCIPLES OF	1
		UDA What i	L STABILITT	ار۱ ۱
	1.1	what i	S Latex ?	····· I
	1.2	Latex S	Synthesis and Uses	Z
	1.3	Histori	cal Context and Economic Importance	8
	1.4	Overvi	ew of the Film Formation Process	10
	1.5	Enviro	nmental Legislation	15
	1.6	Releva	nt Colloid Science	17
		1.6.1	Interaction Potentials	17
		1.6.2	Fluid Motion	22
	Refe	rences		24
2	EST	ABLISH	ED AND EMERGING TECHNIQUES OF STUDYI	NG
	LAT	'EX FILI	M FORMATION	27
	2.1	Techni	ques to Study Latex in the Presence of Water (Wet	
		and Da	mp Films)	28
		2.1.1	Physical Probes of Drying	29
		2.1.2	Specialist Electron Microscopies	
		2.1.3	Scattering Techniques	
		2.1.4	Profiling Water and Particles with Spectroscopies	
		2.1.5	Probe Techniques for the Aqueous Environment	
	2.2	Techni	ques to Study Particle Packing and Deformation	
		in Dry	Films	61
		2.2.1	Scanning Probe Microscopies	61
		2.2.2	Scanning Near-Field Optical Microscopy (SNOM)	
			and Shear Force Microscopy	
		2.2.3	Electron Microscopies	71
	2.3	Techni	ques to Study Film Crosslinking	
		2.3.1	Ultrasonic Reflection and OCM	
		2.3.2	Spectroscopic Techniques	
			I	

	2.4	Techni	iques to Study Interdiffusion and Coalescence	74
		2.4.1	Small Angle Neutron Scattering (SANS)	75
		2.4.2	Fluorescence Resonance Energy Transfer (FRET)	76
		2.4.3	Transmission Spectrophotometry	83
	2.5	Conclu	uding Remarks	
	Refe	rences		
3	DRY	ING OF	LATEX FILMS	95
0	3.1	Humid	lity and Evaporation	
		3.1.1	Background	
	3.2	Evapor	ration Rate from Pure Water	
	3.3	Evapor	ration Rate from Latex Dispersions	
	3.4	Vertica	al Drving Profiles	
		3.4.1	Scaling Argument	101
		3.4.2	Governing Equations	102
		3.4.3	Experimental Studies	104
		3.4.4	Consequence of Inhomogeneous Vertical Drying:	
			Skin Formation	107
	3.5	Horizo	ontal Packing and Drying Fronts	107
		3.5.1	Model for Horizontal Drying Fronts	
		3.5.2	Lapping Time and Open Time	
	3.6	Colloic	dal Stability	114
	3.7 Film Cracking		116	
		3.7.1	Do the Cracks Follow the Drying Front or Propagate	
			Quickly Over the Entire Film?	116
		3.7.2	What Sets the Crack Spacing?	117
	Refer	rences		117
4	PAR	TICLE	DEFORMATION	121
•	4 1	Introdu	iction	121
	4 2	Driving	y Forces for Particle Deformation	122
	1.2	421	Wet Sintering	123
		4.2.2	Dry Sintering	123
		4.2.3	Capillary Deformation	124
		4.2.4	Capillary Rings	126
		4.2.5	Sheetz Deformation	126
	4.3	Particle	e Deformations	
		4.3.1	Hertz Theory – Elastic Spheres with an	
			Applied Load	127
		4.3.2	JKR Theory – Elastic Spheres with an	
			Applied Load and Surface Tension	
		4.3.3	Frenkel Theory – Viscous Spheres with Surface	
			Tension	128
		4.3.4	Viscoelastic Particles	

	4.4	The Pro	oblem with Particle-Particle Approach	
		4.4.1	Routh and Russel Film Deformation Model	
	4.5	Deform	nation Maps	
		4.5.1	Wet Sintering	
		4.5.2	Capillary Deformation	133
		4.5.3	Dry Sintering	133
		4.5.4	Receding Water Front	133
		4.5.5	Use of the Deformation Maps	134
	4.6	Dimens	sional Argument for Figure 4.6	135
		4.6.1	Wet Sintering	135
		4.6.2	Capillary Deformation	135
		4.6.3	Dry Sintering	136
		4.6.4	Sheetz Deformation	136
	4.7	Effect of	of Temperature	137
	4.8	Effect of	of Particle Size	139
	4.9	Experir	mental Evidence for Deformation Mechanisms	140
		4.9.1	Inferring Deformation Mechanisms from Water	
			Distributions	140
		4.9.2	Determination of Deformation Mechanisms Using	
			an MFFT Bar and Optical Techniques	143
		4.9.3	Microscopy of Particle Deformation	143
		4.9.4	Scattering Techniques	146
		4.9.5	Detection of Skin Formation	146
	Refer	ences		146
		_		
5	MOL	ECULA	R DIFFUSION ACROSS PARTICLE	
	BOU	NDARIE	£8	
	5.1	Essenti	al Polymer Physics	
		5.1.1	Interface Width at Polymer-Polymer Interfaces	
		5.1.2	Polymer Reptation	
	5.2	Develo	pment of Mechanical Strength and Toughness	158
		5.2.1	Dependence on the Density of Chains Crossing	
			the Interface	
		5.2.2	Dependence on Interdiffusion Distance, Λ	162
	5.3	Factors	that Influence Diffusivity	164
		5.3.1	Molecular Weight and Chain Branching	164
		5.3.2	Temperature Dependence	165
		5.3.3	Influence of Hard Particles	
		5.3.4	Latex Particle Size	172
		5.3.5	Particle Structure and Hydrophilic Membranes	172
	5.4	Faster I	Diffusion with Coalescing Aids	174
	5.5	Simultaneous Crosslinking and Diffusion: Competing		
	D. C	Enects		1/5
	Reter	ences		1/9

6	SUR	FACTA	NT DISTRIBUTION IN LATEX FILMS	185
	6.1	Introdu	action	185
		6.1.1	Where Can Surfactant Go in a Dried Film?	186
		6.1.2	Effect of Non-Uniform Surfactant Distributions	188
		6.1.3	Mechanisms of Surfactant Transport	191
	6.2	Adsorp	otion Isotherms	192
	6.3	Model	ling of Surfactant Distribution during the Drying Stage	194
	6.4	Effect	of Surfactant's Vertical Distribution on Film Topography	199
	6.5 Experimental Evidence for Surfactant Locations		mental Evidence for Surfactant Locations	201
		6.5.1	Interfaces with Air and Substrates	201
		6.5.2	Surfactant in the Bulk of the Film	202
		6.5.3	Depth Profiling and Mapping	202
	6.6	Reactiv	ve Surfactants	204
		6.6.1	Reactive Surfactant Chemistry	205
		6.6.2	Effect of Surfmers on Film Properties	205
	6.7	Summa	ary	207
	Refe	rences	-	207
7	NAN	OCOM	POSITE LATEX FILMS AND CONTROL OF	
	THE	IR PRO	PERTIES	213
	7.1	Introdu	action	213
		7.1.1	Properties of Nanocomposites	214
		7.1.2	Applications of Colloidal Nanocomposites	216
	7.2	Types	of Hybrid Particles	217
		7.2.1	Polymer-Polymer Hybrid Particles	217
		7.2.2	Inorganic and Polymer Nanocomposite Particles	219
		7.2.3	'Self-Assembly' of Nanocomposite Particles by	
			Precipitation or Flocculation of Pre-Formed	
			Nanoparticles	223
	7.3	Colloid	al Particle Deposition and Assembly Methods	225
		7.3.1	Deposition Methods	227
		7.3.2	Vertical Deposition	229
		7.3.3	Surface Pattern-Assisted Deposition	230
		7.3.4	Long-Range Order from Self-Assembled Core-	
			Shell Particles	232
	7.4	Colloid	al Nanocomposites from Particle Blends	233
		7.4.1	Advantages of Particle Blends	233
		7.4.2	Dispersion of Nanoparticles	233
		7.4.3	Long-Range Order in Particle Blends	235
	7.5	Three I	Lessons about the Properties of Waterborne	
		Nanoco	omposite Films	238
		7.5.1	Lesson One	238
		7.5.2	Lesson Two	244
		7.5.3	Lesson Three	245
				-

8	FUTURE DIRECTIONS AND CHALLENGES		
	8.1	Film Formation from Anisotropic Particles	
	8.2	Assembly of Particles over Large Length Scales	
	8.3	Technique Development	
	8.4	Nanocomposite Structure and Property Correlations	
	8.5	Interdiffusion of Polymers in Multiphase Particles	
	8.6	Templating Film Topography	
	8.7	Resolving the Film Formation Dilemma	
	Refe	rences	

APPENDICES

.

A	Derivation of Creeping Flow and the Result for Low			
	Reyi	nolds Number Flow Around a Sphere		
	A.1	Derivation of Creeping Flow		
	A.2	Scaling of the Navier-Stokes Equation		
	A.3	Stokes Flow		
	A.4	Sedimentation	277	
B	GAF	RField Profiling Techniques and Experimental		
	Para	ameters		
	Refe	rences		
С	Terr	ninology of Humidity and an Expression for		
	Evaporation Rate			
	C.1	Humidity		
	C.2	Relative Humidity		
	C.3	Dry Bulb Temperature		
	C.4	Wet Bulb Temperature		
	C.5	Specific Volume		
	C.6	Enthalpy of Air		
	C.7	Psychrometric Chart		
	C.8	Dew Point		
	C.9	Relating Humidity to Partial Pressure		
	Example 1			
	Example 2			
	Exar	nple 3		
	Exar	nple 4		
	Exar	nple 5		
	C.10	Evaporation Rate		
	Refe	rences		

Frac		
D.1	Fracture Toughness, K _{IC}	
D.2	Plastic Zone Size at the Crack Tip, r _v	
D.3	Critical Energy Release Rate, G	
D.4	Fracture Strength	
D.5	Fracture Energy	
Refe	rences	
100101		

INDEX)1
-------	----