549.6 OLP C.2

Chapter One—Clay Suspensions and Colloidal Systems in General 1 I. The Colloidal Solution of a Clay in Water 1 A. Observations with the Naked Eye 1 B. Observations in the Ordinary-Light Microscope 2 2 C. Observations in the Ultramicroscope D. Observations with the Electron Microscope 6 E. X-Ray Diffraction Patterns of Clays 9 9 F. Electron Diffraction Patterns of Clay Particles **II.** Particle Interaction 9 III. Terminology in Colloid Chemistry 12 IV. Classification of Colloidal Systems 13 Reference 15 Chapter Two—Properties of Hydrophobic Sols 16 I. Settling, Aging, and Flocculation 16 A. Settling 16 B. Aging 17 C. Flocculation (Particle Agglomeration) 17 II. The Origin of the Electric Charge of the Particles 17 III. The Preparation of a Stable Hydrophobic Sol 20 A. Condensation Method 21 B. Dispersion Method 21 C. Cleaning of the Sols 22 IV. Flocculation of Sols by Electrolytes 23 V. Reversal of Particle Charge-Irregular Flocculation Series 25 VI. Counter-Ion Exchange 27 VII. Gelation—A Special Case of Flocculation 28 References 29 Chapter Three—The Theory of the Stability of Hydrophobie Sols 30 I. Configuration of the Electric Double Layer 30 II. Effect of Electrolytes on the Configuration of the Electric Double Layer 35 III. The Balance of Repulsive and Attractive Forces on Particle Approach 37 A. The Electric Double-Layer Repulsion 37 B. The van der Waals Attraction 37 39 IV. The Summation of Repulsion and Attraction V. The Net Interaction Curve and Sol Stability 40 References 43 Chapter Four-Successes of the Theory of Stability 45 I. Stability, Flocculation, and the Schulze-Hardy Rule 45 II. Limits of Particle Size 46 III. Flocculation by Water-Miscible Organic Solvents 47 IV. Direct Evidence of Long-Range Particle Interaction : Schiller Layers and Tactoids 47 A. Schiller Layers 47 **B.** Tactoid Formation 48 V. Counter-Ion Exchange 49 References 49 **Chapter Five—Further Theories** 51

	I. Stern's Model of the Double Layer and Other Refinements	51
IV. "Entropy" Stabilization56References5Chapter Six—Clay Mineralogy5	II. The Hydration Theory of Stability and Its Fallacies	53
References5Chapter Six—Clay Mineralogy5	III. The "Critical Zeta Potential"	55
Chapter Six—Clay Mineralogy 5	IV. "Entropy" Stabilization	56
	References	57
I. Structural Principles 59	Chapter Six—Clay Mineralogy	59
	I. Structural Principles	59

CONTENTS

Page

II. Montmorillonites (Expanding Three-Layer Clays)	66
III. Illites (Nonexpanding Three-Layer Clays)	70
IV. Kaolinites (Two-Layer Clays)	71
V. Chlorites	72
VI. Attapulgite (Palygorskite)	72
VII. Mixed-Layer Clays	73
VIII. Differential Thermal Analysis of Clays (DTA)	73
IX. Size and Shape of Clay Particles	76
A. Direct Method—Ultramicroscopical Counting	76
B. Indirect Methods	77
C. Factors Determining Particle Size and Shape in the Genesis and Diagenesis	
Of Clay Minerals	78
X. Determination of the Surface Area of Clays	79
A. Computation from the Particle Dimensions	79
B. Computation from the Crystallographic Cell Dimensions	79
C. Direct Determination from Vapor-Adsorption Data	80
XI. Density of Charge of the Surface	80
XII. Conclusions	81
References	82
Chapter Seven—Electric Double-Layer Structure and Stability of Clay Suspensions	89
I. Electric Double-Layer Structure	89
A. The Double-Layer on the Flat Unit-Layer Surface	89
B. The Double-Layer on the Edge Surfaces of Clay Plates	90
II. Flocculation and Gelation	93
A. Modes of Particle Association	93
B. Clay Flocculation and the Schulze-Hardy Rule	95
C. Particle Association and Flow Properties	90
D. Argumentation	101
E. Further Experimental Support	103
1. The Structure of the Pure Gel	103
2. Criterion for Face-to-Face Association ("aggregation")	104
F. Particle Association in Dilute Sols and Spontaneous Swelling of	
Montmorillonites	104
1. Particle Association in Dilute sols	104
2. Spontaneous Swelling of Montmorillonites	105
G. Deflocculation of Clay Suspensions	106
References	107
Chapter Eight—Peptization of Clay Suspensions	109
I. Peptization (Deflocculation) by Special Inorganic Salts	109
II. The Mechanism of Peptization	109
III. Activity Reduction and Ion Exchange in Clay Peptization	115
A. Cation Activity Reduction	115
B. Ion Exchange	116
IV. Peptization by Alkali	117
References	119
Chapter Nine—Technological Applications of Stability Control	120
I. Sedimentation and Stability	120
A. Principles	120
B. Applications	123
1. Separation of Dispersed Solids from a Suspension	123
2. Sedimentation Geology	124
3. Paints 4. Propagation of Thin Surface Contings	124 124
4. Preparation of Thin Surface Coatings5. Soils	124 124
J. 30118	124
II. Filtration of Suspensions and Stability	124
A. Principles	124
B. Applications	125
1. Analytical Chemistry	125

	105
2. Management of Clay-Containing Soils	125
3. Permeability of Porous Formations	126
4. Conditioning of Drilling Fluids	127
5. Ceramics	129
III. Rheology and Stability of Suspensions	129
A. Terminology	129
B. Measurements of Flow Properties	133
C. Rheological Properties of Suspensions	135
1. Dilute Sols and Suspensions	135
2. Effect of particle Interaction on the Flow Properties of Suspensions	136
3. Thixotropy and Rheopexy	137
D. Applications	139
1. Drilling Fluids	139
2. Paints	143
3. Paper Filler and Coatings	144
E. Rheological Properties of Sediments	144
IV. Clay-Water Relationships: Swelling and Compaction in Soil Engineering and	
Sedimentary Geology	146
A. Short Range Particle Interaction—Swelling Due to Surface Hydration Energy	140
B. Long Range Particle Interaction—"Osmotic Swelling" or Electrical	1.10
Double-Layer Repulsion	149
References	152
Chapter Ten—Interaction of Clays and Organic Compounds 155	
I. Introduction	155
A. Terminology	155
B. Wetting	156
C. Classification	156
D. X-Ray Observations	157
E. Adsorption Measurements	159
II. Compounds with Low to Moderate Molecular Weights	160
A. Organic Anions—Specifically Tannates	160
1. Effect of Tannates on Clay Suspensions	160
2. Application of Tannates in "Red Muds" and "Lime Red Muds"	161
B. Organic Cations—Specifically Amine Salts	165
C. Polar Organic Compounds	167
III. Macromolecular Compounds	168
A. Polyelectrolytes	168
1. Effect of Polyelectrolytes on Clay Suspensions	169
2. The Mechanism of the Protective and Sensitizing Action	170
3. Applications	172
B. Nonionic Polymers	172
1. Interaction with Clay Suspensions	174
2. Applications	174
IV. Chemical Reaction Products of Clays and Organic Compounds	175
A. Reactions Involving Silanol Groups	175
B. Interlayer Reactions in Nonswelling Minerals	176
C. Color Reactions	176
V. Emulsions Containing Dispersed Clays	177
A. Applications	178
VI. Clay Dispersions in Oil	179
A. Applications	180
VII. Summary of Particle Interaction	181
A. Factors Promoting Deflocculation	181
1. Electric Double-Layer Repulsion	181
2. "Entropic" Repulsion	181
3. Short-Range Hydration or "Lyosphere" Repulsion	181
4. Born Repulsion	181
B. Factors Promoting Flocculation	182
1. van der Waals Attraction	182
2. Electrostatic Attraction	182
3. Bridging of Particles by Polyfunctional Long-Chain Compounds	182

4. Bridging of Particles by a Second Immiscible Liquid Component References	182 183
	105
Chapter Eleven—Electrokinetic and Electrochemical Properties of Clay-Water Systems	188
I. Electrokinetic Phenomena	189
A. Surface Conductance	189 192
B. Electrophoresis C. Electrophoresis	
D. Streaming Potentials	193 194
E. Electrokinetic Phenomena in Porous Media	194 194
II. Electrochemistry of Dispersed Systems	194
A. Ion Activities and pH Measurements	190 196
1. Degree of Dissociation and Ion Activity in Electrolyte Solutions	196
2. Determination of Ion Activities in Solutions	197
3. The pH Scale and Measurements of pH in Electrolyte Solutions	198
4. Measurement of pH in Sols and Suspensions	199
5. "Degree of Dissociation" and "Cation Activities" in Clay Suspensions	202
B. Membrane Potentials	205
References	208
Synopsis	210
Appendix I—Note on the Preparation of Clay Suspensions References	239 242
Appendix II—Miscellaneous Computed Data for Montmorilonites	244
A. Total Layer Surface Area and Surface Charge Density	244
B. Average Particle Distance in Suspensions of Clays Parallel and Cubic Stacking	245
Of the plates	245
C. Formula Computation from Chemical Analysis References	248 249
References	27)
Appendix III—Electric Double-Layer Computations	251
A. The Single Flat Double Layer	251
1. Potential and Charge Distribution in a Single Flat Double Layer According	251
To the Gouy theory	251
2. Potential and Charge Distribution in a Flat Double Layer According to the	256
Stern Model 3. Corrections of the Gouy Theory According to Bolt	256 259
B. Interacting Flat Double Layers	260
1. Potential and Charge Distribution between Interacting Flat Double Layers	200
According to the Gouy Model	260
2. Potential and Charge Distribution between Interacting Surfaces with Stern-Type	200
Double Layers	263
C. Force and Energy of Interaction of Two Flat Double Layers	267
1. Repulsive Energy of Double Layers of Constant Potential Derived from the	
Free-Energy Change	267
2. Direct Computation of the Interaction Force between Flat Double Layers	267
3. Interaction Energy of Stern Double Layers	267
D. Cation-Exchange Capacity and Negative Adsorption	270
E. Cation-Exchange Equilibrium	273
1. Monovalent Cation Exchange	273
2. Monovalent-Divalent Ion Exchange	274
F. Summary of Gouy Double-Layer Formulas	275
1. Symbols and Values	275
2. Single Gouy Double Layer	276
3. Interacting Gouy Double Layers	077
A Internetion I/one and I/mennet	277
4. Interaction Force and Energy	277 279

Appendix IV—van der Waals Attraction Energy between Two Unit Layers	280
Appendix V—Clay Literature	282
Books, Monographs, Reviews	282
Periodic Publications	284
Author Index	289
Subject Index	295