	Preface	page	xi
	Acknowledgements		xiii
1	Some basic ideas		1
	1.1 Planetary atmospheres		1
	1.2 Equilibrium temperatures		2
	1.3 Hydrostatic equation		3
	1.4 Adiabatic lapse rate		3
	1.5 Sandstrom's theorem		4
	Problems		6
2	A radiative equilibrium model		8
	2.1 Black-body radiation		8
	2.2 Absorption and emission		8
	2.3 Radiative equilibrium in a grey atmosphere		10
	2.4 Radiative time constants		13
	2.5 The greenhouse effect		14
	Problems		15
3	Thermodynamics		17
	3.1 Entropy of dry air		17
	3.2 Vertical motion of saturated air		17
	3.3 The tephigram		20
	3.4 Total potential energy of an air column		20
	3.5 Available potential energy		22
	3.6 Zonal and eddy energy		26
	Problems		27
4	More complex radiation transfer		31
	4.1 The integral equation of transfer		31
	4.2 Integration over frequency		32
	4.3 Heating rate due to radiative processes		33
	4.4 Single lines		33
	4.5 Transmission of an atmospheric path		37

	4.6 Cooling by carbon dioxide emission from upper	
	stratosphere and lower mesophere	37
	4.7 Absorption of solar radiation by ozone	38
	4.8 Band models	39
	4.9 Continuum absorption	40
	4.10 Global radiation budget	40
	Problems	42
5	The upper atmosphere	46
	5.1 Upper atmospheric temperature structure	46
	5.2 Diffusive separation	47
	5.3 The escape of hydrogen	50
	5.4 The energy balance of the thermosphere	53
	5.5 Photochemical processes	55
	5.6 Breakdown of thermodynamic equilibrium	57
	Problems	63
6	Clouds	67
	6.1 Cloud formation	67
	6.2 The growth of cloud particles	67
	6.3 The radiative properties of clouds	69
	6.4 Radiative transfer in clouds	70
	Problems	72
7	Dynamics	74
	7.1 Total and partial derivatives	74
	7.2 Equations of motion	. 74
	7.3 The geostrophic approximation	77
	7.4 Cyclostrophic motion	79
	7.5 Surface of constant pressure	79
	7.6 The thermal wind equation	80
	7.7 The equation of continuity	81
	Problems	82
8	Atmospheric waves	87
	8.1 Introduction	87
	8.2 Sound waves	87
	8.3 Gravity waves	88
	8.4 Rossby waves	03
	8.5 The vorticity equation	05
	8.6 Three dimensional Rossby-type waves	95
	Problems	90
	viii	20

۰.

9	Turbulence	103
	9.1 The Reynolds number	103
	9.2 The Reynolds stresses	104
	9.3 Eckman's solution	105
	9.4 The mixing-length hypothesis	107
	9.5 Eckman pumping	108
	9.6 The spectrum of atmospheric turbulence	109
	Problems	110
10	The general circulation	115
	10.1 Laboratory experiments	115
	10.2 A symmetric circulation	116
	10.3 Inertial instability	121
	10.4 Barotropic instability	122
	10.5 Baroclinic instability	123
	10.6 Sloping convection	127
	10.7 Energy transport	128
	10.8 Transport of angular momentum	129
	Problems	130
11	Numerical modelling	134
	11.1 A barotropic model	134
	11.2 Baroclinic models	134
	11.3 Primitive equation models	136
	11.4 Inclusion of orography	138
	11.5 Convection	138
	11.6 Moist processes	138
	11.7 Radiation transfer	139
	11.8 Sub grid scale processes	143
	11.9 Transfer across the surface	143
	11.10 Other models	144
	Problems	145
12	Global observation	146
	12.1 What observations are required?	146
	12.2 Conventional observations	146
	12.3 Remote sounding from satellites	147
	12.4 Remote sounding of atmospheric temperature	148
	12.5 Remote sounding of composition	152
	12.6 Observations from remote platforms	155
	Problems	157

13	
Atmospheric predictability and climatic change	160
13.1 Short-term predictability	160
13.2 Longer-term variations	100
3.3 Atmospheric feedback processes	161
13.4 Climate modelling	162
Appendices	163
Some useful physical C	164
2 Properties of mysical Constants and data on dry	164
2 Hopernes of water vapour	165
Atmospheric composition	166
4 Relation of geopotential to geometric height	167
5 Model atmospheres (O-105 km)	167
Mean reference atmosphere 110-500 km	107
7 The Planck function	1/0
8 Solar radiation	176
of solar radiation by overage and	177
10 Spectral hand information	179
Ribliogramby	180
Diotiography	187
to works cited in the text	100
Answers to problems and hints to their solution	190
Index	193
	198