572.2 REC V.1

Contents

Co	Contributors		
Pro	Preface		
1	Plant Phenolics – Secondary Metabolites with Diverse Functions Vincenzo Lattanzio, Paul A. Kroon, Stéphane Quideau and Dieter Treutter	1	
1.1	Secondary metabolism in the interactions between plants and their		
	environment	1	
1.2	E Function and use of plant phenolics	5	
	1.2.1 UV sunscreens	6	
	1.2.2 Phenolics as signal compounds	6	
	1.2.3 Phenolics as pigments	8	
	1.2.4 Phenolics and plant growth	9	
	1.2.5 Phenolics and plant defense	11	
	1.2.5.1 Fungal pathogens	13	
	1.2.5.2 Phenolics and plant-insect interactions	17	
	1.2.6 Plant phenolics and health	22	
1.3	8 Note	24	
1.4	References	24	
2	Lignification: are Lignins Biosynthesized via simple Combinatorial		
	Chemistry or via Proteinaceous Control and Template Replication?	36	
	John Ralph, Gösta Brunow, Philip J. Harris, Richard A. Dixon,		
	Paul F. Schatz and Wout Boerjan		
2.1	Introduction	36	
2.2	2 The current theory	37	
2.3	Is there a need for a new theory?	37	
	2.3.1 The challenge hypothesis (proteinaceous control and template		

.

•

		1	
	replication)		38
	2.3.2 Has the challenge hypothesis become a theory?		38
2.4	Are criticisms of the current theory valid?		38
	2.4.1 Lignification as a biochemical anomaly		38

	212	The Brother frequency anomaly	30
	2.4.2	'Obligatory' linkages?	39 40
25	2.4.5 Is the	congatory mixages:	40
2.5	251	Monomer substitution	40
	2.5.1	2.5.1.1 Has monomer substitution been disproven?	40
		2.5.1.1 Malleability of lignification: what makes a good	41
		2.5.1.2 Mancaonity of rightmeanon, what makes a good	13
	252	'Well defined primary structure'	43
	2.3.2	2.5.2.1 Security of lignin alignments	43
		2.5.2.1 Sequencing of right of organization	43
		2.5.2.2 Monomet-independent sequences	40
	252	Ligning' magnitude network	47
	2.3.3	2.5.2.1. The 'number of incomers' machine	4/
	254	2.5.5.1 The number of isomers problem	48
	2.5.4	Comments on template replication	48
16	2.5.5	Polymer branching	49
2.0	wny i	ine new hypothesis is not in contention	50
2.1		En la la la la la la contra anomaly?	51
	2.7.1	Ferulate dehydrodimerization is combinatorial	51
•	2.7.2	Polysaccharide primary structure is NOT absolutely dictated	51
2.8	Summ	ary comments on the dirigent/replication hypothesis	52
2.9	Concl	usions	53
2.10	Notes		55
2.11	Kelere	ences	38
3 F	lavonoi	d–Protein Binding Processes and their Potential Impact	
0	n Hum	an Health	67
C	livier L	Dangles and Claire Dufour	
3.1	Introd	uction	67
3.2	Biolog	gically relevant chemical properties of flavonoids	68
3.3	Bindiı	ng processes prior to absorption	71
3.4	Bindiı	ng processes involved in flavonoid bioavailability	72
	3.4.1	Absorption and conjugation	72
	3.4.2	Transport in plasma	73
	3.4.3	Tissue distribution and cellular metabolism	73
3.5	Bindir	ng processes involved in the potential health effects of flavonoids	74
	3.5.1	Inhibition of enzymes involved in ROS production	74
	3.5.2	Modulation of the redox properties of flavonoids by binding to	76
	353	process Inhibition of protain kinasas	70
	2.2.2 2.5 A	Inhibition of protein kinases	70
	2.5.4	Degulation of game expression	19
36	J.J.J Concl	regulation of gene expression	00 07
3.0 3.7	Dofor		03
5.1	Kelerences 8.		

4 N	1ethods for Synthesizing the Cocoa-Derived Oligomeric Epi-Catechins			
-	- Observations on the Anticancer Activity of the Cocoa Polyphenols			
A	lan P. Kozikowski and Werner Tückmantel			
4.1	Introduction	88		
4.2	Synthesis of procyanidins	89		
	4.2.1 General chemical properties of cocoa procyanidins	89		
	4.2.2 Earlier synthetic work	91		
	4.2.3 The synthesis of benzyl-protected building blocks	92		
	4.2.4 Inter-flavan bond formation using benzyl-protected building blocks	94		
	4.2.5 Establishment of inter-flavan bond stereochemistry	97		
	4.2.6 Further developments	102		
4.3	Anticancer activity	105		
4.4	Acknowledgments	109		
4.5	References	109		
5 G	ene Discovery and Metabolic Engineering in the Phenylpropanoid			
P	athway	113		
Li	uzia V. Modolo, Yongzhen Pang, Li Tian and Richard A. Dixon			
. .				
5.1	Introduction	113		
5.2	Biosynthesis and functions of isoflavones	113		
5.3	Dietary sources of isoflavones	115		
5.4	Metabolic engineering of isoflavones	115		
	5.4.1 Metabolic engineering by ectopic expression of IFS	115		
	5.4.2 Structural biology-assisted design and metabolic engineering			
	with an artificial bifunctional IFS enzyme	116		
5.5	Gene discovery in the proanthocyanidin biosynthetic pathway	117		
	5.5.1 Structural genes for PA biosynthesis	118		
	5.5.2 Regulatory genes for PA biosynthesis	121		
5.6	Metabolic engineering of PAs in plants	122		
5.7	Glycosyltransferases for modification of phenylpropanoid compounds			
	- <i>in-vitro</i> biochemistry and <i>in-vivo</i> function	123		
	5.7.1 UGTs active with non-flavonoid phenolic compounds	124		
	5.7.2 Glycosylation of flavonoid compounds	128		
	5.7.3 Problems for the functional annotation of UGTs	130		
5.8	Concerted strategies for metabolic engineering	131		
5.9	References	132		
5.10	Abbreviation list of the pathway genes	138		

6Recent Advances in the Molecular Biology and Metabolic Engineering
of Flavonoid Biosynthesis in Ornamental Plants139Kevin M. Davies, Huaibi Zhang and Kathy E. Schwinn

6.1	Introduction	
6.2	Metabolic engineering of flavonoid production in flowers	
	6.2.1 Engineering yellow flower colors	143
	6.2.2 Engineering blue flower colors	144
6.3	Anthocyanic vacuolar inclusions	149
6.4	Regulation of anthocyanin biosynthesis	152
6.5	Concluding comments	157
6.6	References	158

7 Recent Advances in the Field of Anthocyanins – Main Focus on Structures Øyvind M. Andersen

167

202

71	Introduction	1.67
/.1	Introduction	10/
7.2	Anthocyanidins	168
7.3	Anthocyanidin equilibrium forms	178
7.4	New anthocyanin glycosides	181
7.5	New anthocyanin acylglycosides	183
7.6	Flavonoid complexes including at least one anthocyanidin subunit	187
7.7	Metalloanthocyanins	188
7.8	Biosynthesis and molecular biology	189
7.9	Anthocyanin localization in plant cells	191
7.10	Acknowledgments	192
7.11	Notes	192
7.12	References	193

8 Salicylic Acid and Induced Plant Defenses

Jean-Pierre Métraux, Elisabeth Lamodière, Jérémy Catinot, Olivier Lamotte and Christophe Garcion

Induced resistance and phenolics	202
The biosynthesis of SA	203
The network of signaling and the action of SA	205
Conclusions	207
Acknowledgment	207
References	207
	Induced resistance and phenolics The biosynthesis of SA The network of signaling and the action of SA Conclusions Acknowledgment References

9	Phenols and the Onset and Expression of Plant Disease Resistance	211
	Ray Hammerschmidt and Samantha I. Hollosy	

9.1	Introduction	211
9.2	Biosynthetic origins of defense-associated phenolic compounds	212
9.3	Phenolic compounds as preformed defenses	212

	9.3.1	Resistance of onion bulbs	. 213
	9.3.2	Fusarium wilt of carnation	214
	9.3.3	Mango fruit and Alternaria	214
	9.3.4	Regulation of preformed antifungal compounds by phenols	
	i	in avocado	214
	9.3.5	Chlorogenic acid and the infection of stone fruit by Monilinia	215
9.4	Active	defense	215
9.5	Localize	ed defenses	216
	9.5.1	Phenolic phytoalexins	216
	9.5.2	Phenolic structural defenses	· 218
	9.5.3	Plant phenols and induced disease resistance	219
9.6	Respons	ses of the induced plant	220
	9.6.1	Induced resistance in green bean and C. lindemunthianum	220
	9.6.2	Acibenzolar-S-methyl mediated induced resistance	220
	9.6.3	Plant growth-promoting rhizobacteria and induced resistance	220
	9.6.4	Silicon as a modulator of defense and phenolic compounds	221
9.7	Chemic	al induction of phenolic compounds and resistance	221
	9.7.1	Structural phenolic compounds and induced resistance	221
	9.7.2	Antioxidant activity of phenolic compounds and plant defense	222
9.8	Phenols	and defense: a multitude of roles	222
9.9	Acknow	vledgment	223
9.10	Referen	ces	223
10	Biogetivi	ty Absorption and Matabalism of Anthogyaning	228
10	Giusenne	(Joe) Mazza and Colin D. Kay	220
	onseppe		
10.1	Introduo	ction	228
	10.1.1	Structural characteristics	228
10.2	Bioactiv	vity	229
	10.2.1	Antioxidant activity	230
	10.2.2	Anti-inflammatory effects	233
	10.2.3	Anti-atherogenic effects	233
	10.2.4	Anticarcinogenic effects	234
	10.2.5	Antibacterial and antiviral activity	235
	10.2.6	Neuroprotective effects	235
	10.2.7	Prevention of obesity	235
	10.2.8	Gastric protective effects	236
	10.2.9	Improvement of vision	236
10.3	Absorpt	tion of anthocyanins	236
	10.3.1	Variability of absorption	239
		10.3.1.1 Variations in dosage	239
		10.2.1.2 Chamical structure of the antheovening	240
		10.5.1.2 Chemical structure of the anthocyannis	240
		10.3.1.3 Food matrix	241
		10.3.1.2Chemical structure of the anthocyalinis10.3.1.3Food matrix10.3.1.4Analytical methodology	241 241 241
	10.3.2	10.3.1.2Chemical structure of the anthocyalinis10.3.1.3Food matrix10.3.1.4Analytical methodologyElimination	241 241 242

	10.3.3	The concentration of anthocyanins in human blood and urine	
		is very low	243
	10.3.4	Suggested mechanisms of anthocyanin absorption	243
	10.3.5	Structural transformations of anthocyanins	245
10.4	Metabo	lism of anthocyanins	247
	10.4.1	Human studies	247
	10.4.2	Animal studies	251
		10.4.2.1 Rat studies	251
		10.4.2.2 Pig studies	252
	10.4.3	Potential mechanisms of anthocyanin metabolism	252
10.5	Conclu	sions	254
10.6	Referen	nces	254

11	Bioavaila and Rela Francisco Begoña (Antonio (ability, Metabolism, and Bioactivity of Food Ellagic Acid ated Polyphenols o A. Tomás-Barberán, Maria Teresa García-Conesa, Mar Larrosa, Cerdá, Rocio González-Barrio, Maria José Bermúdez-Soto, González-Sarrías and Juan Carlos Espín	263
11.1	Introdu	ction	263
11.2	Ellagita	nnins and ellagic acid as examples of bioactive polyphenols	264
11.3	Evaluat	ion of antioxidant activity in vitro	265
11.4	Biologi	cal activity associated to ellagitannin-rich food intake; clinical	
	studies		265
11.5	Questic	ons arising after the demonstration of the large antioxidant	
	activity	in vitro and the biological activity associated with the intake	
	of ellag	itannin-rich food	266
	11.5.1	Bioavailability and metabolism of ellagitannins and ellagic acid	
		and distribution of the metabolites in different tissues	267
	11.5.2	Evaluation of the biological activity of ellagitannin metabolites	
		produced in vivo	269

 11.6
 Conclusion
 275

 11.7
 Acknowledgments
 275

 11.8
 References
 275

•

-12	Multiplicity of Phenolic Oxidation Products in Apple Juices and		
	Ciders, from Synthetic Medium to Commercial Products	278	
	Sylvain Guyot, Stéphane Bernillon, Pascal Poupard and		
	Catherine M.G.C. Renard		

12.1	Introduction	278
12.2	Preparation and characterization of the caffeoylquinic acid o-quinone	
	solution	281

318

12.3	Incubat 12.3.1	tion of caff Incubatio	Teoylquinic acid <i>o</i> -quinone in model solutions n of caffeoylquinic acid <i>o</i> -quinone with caffeoylquinic	282	
		acid		282	
	12.3.2	Incubatio	n of caffeoylquinic acid o-quinone with (-)-epicatechin	285	
12.4	LC-MS	analysis c	of oxidation products in commercial apple beverages	288	
12.5	Conclu	sions		290	
12.6	Acknow	Acknowledgments			
12.7	Referen	nces		290	
13	Phytoest Sampo K	rogens in arkola, An	Drug Discovery for Controlling Steroid Biosynthesis namaria Lilienkampf and Kristiina Wähälä	293	
13.1	Introdu	ction		293	
13.2	Aroma	tase		293	
	13.2.1	Natural p	hytoestrogens as aromatase inhibitors	295	
		13.2.1.1	Anti-aromatase activity of phytoestrogens in human		
			placental microsome-based assays	295	
		13.2.1.2	Anti-aromatase activity of phytoestrogens in cell-based		
			assays	298	
		13.2.1.3	Anti-aromatase activity of phytoestrogens in		
			recombinant-enzyme assays	299	
		13.2.1.4	The anti-aromatase activity of various phytoestrogens	299	
	13.2.2	The struc	ture-activity relationship of phytoestrogens	300	
	13.2.3	Phytoestr	ogens as lead compounds for aromatase inhibition	301	
13.3	1 7β-H y	droxystero	id dehydrogenases and their inhibition by phytoestrogens	304	
	13.3.1	17β-HSD	type 1	305	
		13.3.1.1	Binding of phytoestrogens to 17β-HSD1	307	
	13.3.2	17β-HSD	types 2 and 4	307	
	13.3.3	Fungal 17	7β-HSDcl	308	
		13.3.3.1	Binding of phytoestrogens to 17β-HSDcl	309	
	13.3.4	17β-HSD	type 3	310	
	13.3.5	17β-HSD	type 5	310	
	13.3.6	Phytoestr	ogens as lead compounds for 17β -HSD inhibitors	311	
13.4	Conclu	sions		312	
13.5	Acknow	vledgments	5	313	
13.6	Referen	nces		313	
14	Recent A	Advances i	n the Chemical Synthesis and Biological Activity		
	of Pheno	lic Metab	olites	317	
	Denis Ba	rron			
14.1	Introdu	ction		317	
14.2	The dif	ferent sites	s of generation of phenolic metabolites	318	

,

14.2.1 The saliva

,

	14.2.2	The stomach	319	
	14.2.3	The small intestine	319	
	14.2.4	The colon	320	
	14.2.5	The liver	320	
	14.2.6	Metabolism at the target tissues or cells	321	
14.3	Nature	321		
	14.3.1	4.3.1 Flavone and flavonol metabolites		
	14.3.2	Flavanonone and flavanonol metabolites	322	
	14.3.3	Flavan 3-ol metabolites	324	
	14.3.4	Ellagic tannin metabolites	324	
	14.3.5	Lignan metabolites	325	
	14.3.6	Isoflavone metabolites	325	
	14.3.7	Hydroxycinnamic acid metabolites	326	
	14.3.8	Curcumin metabolites	327	
	14.3.9	Resveratrol metabolites	328	
14.4	The ch	emical synthesis of phenolic conjugates	328	
	14.4.1	The preparation of O-glucuronides	329	
	14.4.2	The preparation of O-sulfates	332	
14.5	The biological properties of phenolic conjugates		334	
	14.5.1	Antioxidant properties	334	
		14.5.1.1 Flavonol conjugates	334	
		14.5.1.2 Flavone conjugates	340	
		14.5.1.3 Flavanone conjugates	340	
		14.5.1.4 Flavan 3-ol conjugates	340	
		14.5.1.5 Isoflavone conjugates	340	
		14.5.1.6 The case of the 7-O-conjugates	341	
	14.5.2	Pro-oxidant properties	342	
	14.5.3	Interaction with signaling cascades	343	
	14.5.4	Enzyme inhibition	344	
		14.5.4.1 Aldose reductase	344	
		14.5.4.2 β-glucuronidase	344	
		14.5.4.3 Xanthine oxidase	344	
		14.5.4.4 Glycerol 3-phosphate dehydrogenase	345	
		14.5.4.5 Cyclooxygenase-2	345	
	14.5.5	Effect on vascular function and angiogenesis	345	
•	14.5.6	Non-covalent binding to proteins	345	
	14.5.7 Activity of microbial and tissular metabolites		346	
14.6	The cellular transport of phenolic conjugates		346	
	14.6.1	Cellular efflux	346	
	14.6.2	Cellular uptake	347	
14.7	Conclu	sions	348	
14.8	References			

15	Polyphenols and Gene Expression <i>Uwe Wenzel and Hannelore Daniel</i>	359
15.1	Introduction	359
15.2	The effects of polyphenols on the expression of genes underlying	
	detoxification mechanisms	359
15.3	Polyphenols and the expression of genes underlying cancer-relevant	
	processes	363
15.4	The impact of polyphenols on the expression of genes underlying	
:	atherosclerosis-relevant processes	369
15.5	References	373
Inde.	x	379

Contents

xv

The color plate section follows page 42

í.

5 þ 5 Ę.