572.36 SPE

CONTENTS

1	Introduction to light absorption: visible and ultraviolet spectra	1
	1 Introduction	1
	2 Spectrophotometry	2
	3 Spectra of some important naturally occurring chromophores	6
	4 Spectrophotometer configurations	9
	5 Choice of spectrophotometer operating conditions	17
	6 Use of the spectrophotometer	22
2	Fluorescence principles and measurement	33
	1 Introduction	33
	2 Physical principles	33
	3 Fluorescence parameters	39
	4 Fluorescence spectrometers	40
	5 Fluorescence spectra	47
3	Time-resolved fluorescence and phosphorescence spectroscopy	69
	1 Introduction	69
	2 Background	69
	3 Equipment for time-resolved fluorescence measurements	84
	4 Phosphorescence	89
4	Introduction to circular dichroism	99
	1 Introduction	99
	2 Measuring a CD spectrum	101
	3 Equations of CD spectroscopy	110
	4 Units of CD spectroscopy	119
	5 Circular dichroism of biomolecules	121
5	Quantitative determination of equilibrium binding isotherms for multiple ligand-macromolecule	
	Using spectroscopic methods	141
	1 Introduction	141
	2 Thermodynamic basis of quantitative spectroscopic titrations	143
	3 Summary	163
6	Steady-state kinetics	167
	1 Introduction to rate equations, first-order, second-order reactions etc.	167
	2 Units	168
	3 Basic assumptions in steady-state kinetics	169
	4 Measurement of specific activity	170

	5 Graphical determination of Km and V	172
	6 Inhibition of enzyme activity	174
	7 Specificity	175
	8 Activators	176
	9 Environmetal effects on enzyme activity	177
	10 Coopertativity	179
	11 Experimental conditions for kinetic studies	181
	12 Concluding remarks	182
7	Spectrophotometric assays	183
	1 Introduction	183
	2 Some general comments on, and practical aspects of , assay design	185
	3 End point and rate assays	187
	4 Spectrophotometric assays for proteins	189
	5 Spectrophotometric assays for nucleic acids	194
	6 Enzyme-based spectrophotometric assays	195
	7 Luminescence-based assays	199
	8 Spectrophotometric assays of enzymes	200
	9 Spectrophotometric assays for protein amino acid side chains	204
	10. Concluding remarks	206
8 Stopped-flow spectroscopy		209
	1. Introduction	209
	2. Features of the basic instrument	210
	3. Measurement at a single wavelength	212
	4. Determining rate constants	220
	5. Multiwavelength detection: diode array rapid scan methods	227
9 Stopped-flow fluorescence spectroscopy		241
	1. Introduction	241
	2. Instrumentation	241
	3. Factors affecting the sensitivity of the optical system	246
	4. Selection of reporter group	249
10 Sto	pped-flow circular dichroism	265
	1. Introduction	265
	2. Instrumentation considerations	266
	3. Currently available instrumentation	271
	4. Additional experimental considerations	274
	5. Examples	278
11. Sp	ectrophotometry and fluorimetry of cellular compartments and intracellular processes	283
	1. Introduction	283
	2. Experimental desingn	284
	3. Examples	293

4. Future prospects	304
12 Use of optical spectroscopic methods to study the thermodynamic stability of proteins	307
1. Introduction	307
2. Basic thermodynamic principles	308
3. Practical considerations and deviations from the two-state model	316
4. Advantages of different spectroscopic signals	320
5. Concluding remarks	325
13 The use of spectroscopic techniques in the study of DNA stability	
1. Introduction	329
2. Overview of UV melting	330
3. Sample	334
4. Instrumentation	343
5. Data analysis	348
A1 List of Suppliers	
Index	