Contents

Preface \(XV \)

List of Contributors \(XVII \)

Volume 1

Part I Chemistry and Biology – Historical and Philosophical Aspects

1. Chemistry and Biology – Historical and Philosophical Aspects \(3 \)
 Gerhard Quinkert, Holger Wallmeier, Norbert Windhab, and Dietmar Reichert

1.1. Prologue \(3 \)

1.2. Semantics \(4 \)

1.2.1. Synthesis – Genesis – Preparation \(4 \)

1.2.2. Synthetic Design – Synthetic Execution \(8 \)

1.2.3. Preparative Chemistry – Synthetic Chemistry \(9 \)

1.3. Bringing Chemical Solutions to Chemical Problems \(10 \)

1.3.1. The Present Situation \(10 \)

1.3.2. Historical Periods of Chemical Synthesis \(12 \)

1.3.3. *Diels–Alder* Reaction – Prototype of a Synthetically Useful Reaction \(16 \)

1.4. Bringing Chemical Solutions to Biological Problems \(18 \)

1.4.1. The Role of Evolutionary Thinking in Shaping Biology \(18 \)

1.4.2. On the Sequence of Chemical Synthesis (Preparation) and Biological Analysis (Screening) \(20 \)

1.5. Bringing Biological Solutions to Chemical Problems \(45 \)

1.5.1. Proteins [99] \(45 \)

1.5.2. Antibodies \(52 \)

1.6. Bringing Biological Solutions to Biological Problems \(53 \)

1.7. EPILOGUE \(54 \)

1.7.1. The Fossil Fuel Dilemma of Present Chemical Industry \(54 \)
3.2 Controlling Protein Function by Caged Compounds 140
 Andrea Giordano, Sirus Zarbakhsh, and Carsten Schultz
 3.2.1 Introduction 140
 3.2.2 Photoactivatable Groups and Their Applications 140
 3.2.3 Caged Peptides and Proteins 150
 3.2.4 Caged Proteins by Introduction of Photoactive Residues via Site
 Directed, Unnatural Amino Acid Mutagenesis 156
 3.2.5 Small Caged Molecules Used to Control Protein Activity 159
 3.2.6 Conclusions 168
 References 168

3.3 Engineering Control Over Protein Function; Transcription
 Control by Small Molecules 174
 John T. Koh
 3.3.1 Introduction 174
 3.3.2 The Role of Ligand-dependent Transcriptional Regulators 175
 3.3.3 Engineering New Ligand Specificities into NHRs 179
 3.3.4 The Requirement of "Functional Orthogonality" 180
 3.3.5 Overcoming Receptor Plasticity 180
 3.3.6 Nuclear Receptor Engineering by Selection 183
 3.3.7 Ligand-dependent Recombinases 184
 3.3.8 Complementation/Rescue of Genetic Disease 186
 3.3.9 De Novo Design of Ligand-binding Pockets 188
 3.3.10 Light-activated Gene Expression from Small Molecules 189
 References 191

4 Controlling Protein–Protein Interactions 199
 4.1 Chemical Complementation: Bringing the Power of Genetics to
 Chemistry 199
 Pamela Peralta-Yahya and Virginia W. Cornish
 4.1.1 Introduction 199
 4.1.2 History/Development 202
 4.1.3 General Considerations 208
 4.1.4 Applications 216
 4.1.5 Future Development 222
 References 223

 4.2 Controlling Protein–Protein Interactions Using Chemical
 Inducers and Disrupters of Dimerization 227
 Tim Clackson
 Outlook 227
Contents

4.2.1 Introduction 227
4.2.2 Development of Chemical Dimerization Technology 228
4.2.3 Dimerization Systems 229
4.2.4 Applications 237
4.2.5 Future Development 245
4.2.6 Conclusion 245
Acknowledgments 246
References 246

4.3 Protein Secondary Structure Mimetics as Modulators of Protein–Protein and Protein–Ligand Interactions 250
Hang Yin and Andrew D. Hamilton

Outlook 250
4.3.1 Introduction 250
4.3.2 History and Development 251
4.3.3 General Considerations 253
4.3.4 Applications and Practical Examples 255
4.3.5 Future Developments 264
4.3.6 Conclusion 265
Acknowledgments 265
References 265

5 Expanding the Genetic Code 271
5.1 Synthetic Expansion of the Central Dogma 271
Masahiko Sisido

Outlook 271
5.1.1 Introduction 272
5.1.2 Aminoacylation of tRNA with Nonnatural Amino Acids 274
5.1.2.2 Micelle-mediated Aminoacylation 275
5.1.2.3 Ribozyme-mediated Aminoacylation 276
5.1.2.4 PNA-assisted Aminoacylation 277
5.1.2.5 Directed Evolution of Existing aaRS/tRNA Pair to Accept Nonnatural Amino Acids 278
5.1.3 Other Biomolecules That Must Be Optimized for Nonnatural Amino Acids 281
5.1.3.2 Adaptability of EF-Tu to Aminoacyl-tRNAs Carrying a Wide Variety of Nonnatural Amino Acids 283
5.1.3.3 Adaptability of Ribosome to Wide Variety of Nonnatural Amino Acids 283
5.1.4 Expansion of the Genetic Codes 284
5.1.4.2 Four-base Codons 285
5.1.4.3 "Synthetic Codons" That Contain Nonnatural Nucleobases 286
In vivo Synthesis of Nonnatural Mutants 287
Part III Engineering Control Over Protein Function Using Chemistry

6 Forward Chemical Genetics 299
 Stephen]. Haggarty and Stuart L. Schreiber
 Outlook 299
6.1 Introduction 299
6.2 History/Development 302
6.3 General Considerations 307
6.3.1 Small Molecules as a Means to Perturb Biological Systems Conditionally 307
6.3.2 Forward and Reverse Chemical Genetics 308
6.3.3 Phenotypic Assays for Forward Chemical-Genetic Screening 311
6.3.4 Nonheritable and Combinations of Perturbations 316
6.3.5 Multiparametric Considerations: Dose and Time 318
6.3.6 Sources of Phenotypic Variation: Genetic versus Chemical Diversity 318
6.3.7 The "Target Identification" Problem 319
6.3.8 Relationship between Network Connectivity and Discovery of Small-molecule Probes 323
6.3.9 Computational Framework for Forward Chemical Genetics: Legacy of Morgan and Sturtevant 325
6.3.10 Mapping of Chemical Space Using Forward Chemical Genetics 326
6.3.11 Dimensionality Reduction and Visualization of Chemical Space 330
6.3.12 Discrete Methods of Analysis of Forward Chemical-genetic Data 334
6.4 Applications and Practical Examples 336
6.4.1 Example 1: Mitosis and Spindle Assembly 336
6.4.2 Example 2: Protein Acetylation 338
6.4.3 Example 3: Chemical-genomic Profiling 340
6.5 Future Development 344
6.6 Conclusion 347
Acknowledgments 348
References 349
Contents

7 **Reverse Chemical Genetics Revisited** 355

7.1 Reverse Chemical Genetics – An Important Strategy for the Study of Protein Function in Chemical Biology and Drug Discovery 355

 Rolf Breinbauer, Alexander Hillisch, and Herbert Waldmann

7.1.1 Introduction 355

7.1.2 History/Development 356

7.1.3 General Considerations 361

7.1.4 Applications and Practical Examples 366

7.1.5 Future Developments 376

7.1.6 Conclusion 379

Acknowledgments 380

References 380

7.2 Chemical Biology and Enzymology: Protein Phosphorylation as a Case Study 385

 Philip A. Cole

7.2.1 Overview 385

7.2.2 The Enzymology of Posttranslational Modifications of Proteins 387

References 401

7.3 Chemical Strategies for Activity-based Proteomics 403

 Nadim Jessani and Benjamin F. Cravatt

7.3.1 Introduction 403

7.3.2 History/Development 404

7.3.3 General Considerations 407

7.3.4 Applications and Practical Examples 415

7.3.5 Future Development 421

7.3.6 Conclusions 422

Acknowledgments 423

References 423

8 **Tags and Probes for Chemical Biology** 427

8.1 The Biarsenical-tetracysteine Protein Tag: Chemistry and Biological Applications 427

 Stephen R. Adams

8.1.1 Introduction 427

8.1.2 History and Design Concepts of the Tetracysteine-biarsenical System 429
8.1.3 General Considerations 430
8.1.4 Practical Applications of the Biarsenical-tetracysteine System 439
8.1.5 Future Developments and Applications 453
8.1.6 Conclusions 454
Acknowledgments 454
References 454

8.2 Chemical Approaches to Exploit Fusion Proteins for Functional Studies 458
Anke Arnold, India Sielaff, Nils Johnsson, and Kai Johnsson
Outlook 458
8.2.1 Introduction 458
8.2.2 General Considerations 459
8.2.3 Applications and Practical Examples 463
8.2.4 Conclusions and Future Developments 476
Acknowledgments 477
References 477

Volume 2

Part IV Controlling Protein–Protein Interactions

9 Diversity-oriented Synthesis 483
9.1 Diversity-oriented Synthesis 483
Derek S. Tan

9.2 Combinatorial Biosynthesis of Polyketides and Nonribosomal Peptides 519
Nathan A. Schnarr and Chaitan Khosla

10 Synthesis of Large Biological Molecules 537
10.1 Expressed Protein Ligation 537
Matthew R. Pratt and Tom W. Muir

10.2 Chemical Synthesis of Proteins and Large Bioconjugates 567
Philip Dawson

10.3 New Methods for Protein Bioconjugation 593
Matthew B. Francis

11 Advances in Sugar Chemistry 635
11.1 The Search for Chemical Probes to Illuminate Carbohydrate Function 635
Laura L. Kiessling and Erin E. Carlson
<table>
<thead>
<tr>
<th>Part V</th>
<th>Expanding the Genetic Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Chemical Informatics</td>
</tr>
<tr>
<td>13.1</td>
<td>Chemical Informatics</td>
</tr>
<tr>
<td>13.2</td>
<td>WOMBAT and WOMBAT-PK: Bioactivity Databases for Lead and Drug Discovery</td>
</tr>
</tbody>
</table>

Volume 3

<table>
<thead>
<tr>
<th>Part VI</th>
<th>Forward Chemical Genetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Chemical Biology and Drug Discovery</td>
</tr>
<tr>
<td>14.1</td>
<td>Managerial Challenges in Implementing Chemical Biology Platforms</td>
</tr>
<tr>
<td>14.2</td>
<td>The Molecular Basis of Predicting Druggability</td>
</tr>
<tr>
<td>15</td>
<td>Target Families</td>
</tr>
<tr>
<td>15.1</td>
<td>The Target Family Approach</td>
</tr>
<tr>
<td>15.2</td>
<td>Chemical Biology of Kinases Studied by NMR Spectroscopy</td>
</tr>
</tbody>
</table>
15.3 The Nuclear Receptor Superfamily and Drug Discovery 891
John T. Moore, Jon L. Collins, and Kenneth H. Pearce

15.4 The GPCR – 7TM Receptor Target Family 933
Edgar Jacoby, Rochdi Bouhelal, Marc Gerspacher, and Klaus Seuwen

15.5 Drugs Targeting Protein–Protein Interactions 979
Patrick Chêne

16 Prediction of ADMET Properties 1003
Ulf Norinder and Christel A. S. Bergstrom

Part VII Reverse Chemical Genetics Revisited

17 Computational Methods and Modeling 1045
17.1 Systems Biology of the JAK-STAT Signaling Pathway 1045
Jens Timmer, Markus Kollmann, and Ursula Klingmüller

17.2 Modeling Intracellular Signal Transduction Processes 1061
Jason M. Haugh and Michael C. Weiger

18 Genome and Proteome Studies 1083
18.1 Genome-wide Gene Expression Analysis: Practical Considerations and Application to the Analysis of T-cell Subsets in Inflammatory Diseases 1083
Lars Rogge and Elisabetta Bianchi

18.2 Scanning the Proteome for Targets of Organic Small Molecules Using Bifunctional Receptor Ligands 1118
Nikolai Kley

Part VIII Tags and Probes for Chemical Biology

19 Chemical Biology – An Outlook 1143
Gunther Wess

Index 1151