574.192 45 PROt

CONTENT

	Page
1. The New Paradigm for Protein Research	1
I. Introduction	1
A. Purposes	1
B. Confusing Biology with Chemistry	8
C. Supporting Evidence	9
II. Protein Structure	10
A. Information from <i>B</i> Factors	10
B. Observations Based on <i>B</i> Factors	12
C. Information from Proton-Exchange Studies	28
D. Information About Groups from Evolution and Genetics	36
E. Information from Density Data	39
III. How Substructures Determine Gestalt Structure and Properties	39
A. Genetic Stability	39
B. Kinetic Stability	40
C. Thermodynamic Stability	45
D. "Molten-Globule" Conformation States	53
E. Structural Dependence of Common Experimental Observables IV. Some Devices that Became Possible After the Discovery of the Knot-Matrix	54
Construction Principle	56
A. Modular Construction of Knot-Matrix Proteins	56
B. Expansion-Constraction Processes	56
C. Free Volume and Dielectric Constant	57
D. The "Pairing Principle"	58
E. "Completing the Knot"	59
F. Protein Activity Coefficients: Gibbs-Duhem Consequences	62
G. Intermolecular Communication Through Surfaces	67
V. Some Thermodynamic Topics of Special Impotance for Biology	69
A Weak Relationship Between Free Energy and Its Temperature and	
Pressure Derivatives	69
B. Enthalpy-Entropy Compensation Behavior	75
VI. Conformational Dynamic and "Dynamic Matching"	82
A. The Facts	82
B. Protein-Protein Association	91
C The Oxygen-Binding Mechanism of Hemoglobins	94
D. Enzyme Mechanisms: Updating the Rack Mechanism	100
E. The Kunitz Proteinase Inhibitors	117
F. The Immune Reaction	118
VII. Dynamical Aspects of Protein Electrostatic Potentials	123
A. The Next Level of Complexity	123
B. What Is the Atomic Description of a Knot?	123
C. What Factors Are Responsible for the Stability of Knot?	124
D. Gestalt Versus Local Fields	126
VIII. Summary	129
A. Thermodynamics in the Biosphere	129
B. The Evolution of Devices	130
C. Function Follows Form?	131
D. Consequences for the Immediate Future of Protein Chemistry	133
E. Hypotheses Based on the Knot-Matrix Principle	134
References	136
2. Solvent Interactions with Protein as Revealed by X-Ray Crystallographic Studies	143
I. Introduction	143
II. Solvent Content of Protein Crystals	144
III. Crystallographic Location of Solvent	145
A. The Crystallographic Method	145

B. Identification and Refinement of Solvent Sites C. Chemical Identity of Solvent Molecules	146 150
IV. Patterns of Solvent Structure	151
A. The General Picture	151
B. Hydration of Protein Groups	154
C. Internal Solvent Molecules	157
D. Surface Solvent Structure	162
E. Association with Secondary Structure	167
F. Solvent in Active Sites	172
V. significance of Bound Solvent	174
A. Conservation of Solvent	174
B. Contributions to Stability	178
C. Functional Roles of Solvent Molecules	180
VI. Bound Ions and Other Solvent Molecules	182
VII. Conclusions	185
References	185
3. Protein Hydration and Glass Transition Behavior	191
I. Introduction II. Dranauation of Solid State Somples	191
II. Advantion of Water Vaner by Proteins. The Southern Lethern	195
III. Adsorption of water vapor by Proteins: The Sorption Isotherm	193
A. Conventional Sorption Isotherms	195
B. Site Heterogeneity and Conformational Perturbations	198
IV. Identification and Coverage of Sorption Sites and Some Critical Hydration	201
Levels in the Sorption Isotherm	205
A. Infrared Spectroscopic Studies of Protein Hydration	206
B. Heat Capacity as a Function of Hydration	207
C. Enzyme Activity	210
D. Proton Percolation	211
E. Nonfreezing Water	214
F. The Effect of Hydration on Thermal Stability	215
G. Protein Surface Areas and Monolayer Coverage	217
V. Hydration-Induced Conformational Changes	217
A. Solid State ¹³ C NMR Studies of Protein Hydration	218
B. An X-Ray Diffraction Study of a Dehydrated Protein	219
C. FTIR Studies of Dehydration-Induced Conformational Transitions	220
VI. Effect of Hydration on Protein Dynamics	221
A. Spectroscopic Methods	221
B. Hydrogen Isotope Exchange	224
C. Position Annihilation Lifetime Spectroscopy	225
VII. Glass Transitions in Proteins	227
A. Glass Transition Behavior in Polymers	227
B. Free Volume in Glass Transition Theory	230
C. The 200 K Transition in Fully Hydrated Proteins	232
D. Hydration Dependence of Glass Transition Temperature	233
E. Hysteresis Effects	236
VIII. Dynamically Distinct Structural Classes in Globular Proteins	237
A. Evidence from Hydrogen Isotope Exchange	238
B. The Basis of Knot Formation	242
C. The Connection Between Hydrogen Exchange Properties and Glass	045
I ransition Benavior	245
D. Monten Globule and Cold-Denatured States	249
IA. Flotelli Foldilig	249
	257
Kelelelices	239
4. Dielectric Studies of Protein Hydration	265
I. Introduction	265
II. Dielectric Theory and Measurements	266

III. Experimental Results	273
A. Protein Solutions	273
B. Solid State Studies	275
C. Water as Plasticizer	277
D. Proton Conduction Effects	281
IV. Concluding Remarks	285
References	286
5. Protein Dynamics: Hydration, Temperature, and Solvent Viscosity Effects as Revealed by	
Rayleigh Scattering of Mosbauer Radiation	289
I. Introduction	289
II. Background of RSMR Technique, Basic Expressions, and Approximations	290
III. Hydration Dependencies of the Elastic RSMR Fractions and RSMR Spectra	296
IV. Solvent Composition and Viscosity Dependencies of the Elastic RSMR Fractions	300
V. Temperature Dependencies of the Elastic RSMR Fraction and RSMR Spectra	305
VI. Angular Dependencies of Inelastic RSMR Intensities	306
VII. Properties of Protein-Bound Water	309
VIII. Dynamical Properties of Hydrated Proteins	314
IX. Principal Conclusions and Outlook	321
References	322
6. Proteins in Essentially Nonaquenous Environments	327
I. Introduction	327
II. "Annydrous" and Heterogeneous Systems	332
III. "Anhydrous" and Homogeneous Systems	335
IV. Water/Cosolvent Mixtures	337
V. Conclusions	339
References	340
7. Solvent Viscosity Effect on Protein Dynamics: Updating the Concepts	343
I. Introduction	343
II. Brownian Dynamics	344
A. Basics	345
B. Generalized Approach	349
C. Free Volume	356
III. Barrier Crossing	358
A. Basic Concepts	358
B. Models	359
IV. Viscosity Effect	363
A Kinetic Studies	363
B. Ultrasonic Studies	364
V. Why a Power Law?	368
VI. Conclusions	369
References	369
8. Effect of Solvent on Protein Internal Dynamics: The Kinetics of Ligand Binding to	375
Myoglobin	375
I. Introduction	375
II. The Flash Photolysis Experiment	377
III. The Kinetics of CO Binding to Myoglobin	378
IV. The Surface Barrier	380
V. The Internal Barrier	382
VI. Conclusion	383
References	384
9 Solvent Effects on Protein Stability and Protein Association	387
I Introduction: A Historic Perspective	387
II. Protein Folding and Protein-Protein Association	390
III. Direct and Indirect Interactions	396

 V. Inventory of Solvent-Induced Effects VI. The Missing Information and How to Obtain It A. The Solvation Gibbs Energy of the Large Linear Polypeptide Having No Side Chains B. Solvation of the Backbone of the F Form 413 B. Solvation of the Backbone of the F Form 414 C. Loss of the Conditional Solvation Gibbs Energies of the Various Side Chains 415 E. Higher-Order Correlations 416 VII. Concluding Remarks 417 References 420 10. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 II. Intractoric Mechanisms for Enthalpy-Fatropy compensation 422 111. Intraction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 425 V. Thermodynamic Compensation 426 V. Thermodynamic Partial Entropies in Dilute Solutions 433 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 C. Solvation Mechanism 433 C. Solvation Mechanism 433 V. Lapplication to Nonpolar Solutes in Water A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 442 II. Relation Between Preferential Interactions and Transfer Free Energy A. Thermodynamic Definition of Binding B. Molar Sinding: Definition of Binding A. Classical Site Binding Treatment A. Classical Site Binding Treatment B. Enadequacy of the Site Binding Treatment Cosolvent Effects on Equilibria Relative to Water A. Classical Site Binding Treatment C. The Wyman Slope	IV. Driving Force. Force, and Stability	401
VI. The Missing Information and How to Obtain It 413 A. The Solvation Gibbs Energy of the Large Linear Polypeptide Having No Side Chains 413 B. Solvation of the Backbone of the F Form 414 C. Loss of the Conditional Solvation Gibbs Energies of the Various Side Chains 415 D. Pairwise Correlations 416 VI. Concluding Remarks 416 WI. Concluding Remarks 417 References 420 10. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 II. Introduction 422 III. Interaction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 423 VI. Mathematical Examples 422 VI. Mathematical Formulation 433 C. Solvation Mechanism 433 C. Solvation Mechanism 433 C. Solvation Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VII. Concluding Remarks 441 References 442 11. Preferential Interactions and Transfer Free Energy	V. Inventory of Solvent-Induced Effects	407
A. The Solvation Gibbs Energy of the Large Linear Polypeptide Having No Side Chains 413 B. Solvation of the Backbone of the F Form 414 C. Loss of the Conditional Solvation Gibbs Energies of the Various Side Chains 414 D. Pairwise Correlations 416 B. Bridger Correlations 416 VII. Concluding Remarks 417 References 420 0. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 I. Introduction 421 II. Introduction 422 III. Interaction Mechanisms and Compensation Vector Diagrams 423 V. Thermodynamic Compensation 425 V. Thermodynamic Compensation 427 A. Molecular Species 428 VI. Mathematical Formulation 433 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 435 VI. Mathematical Formulation 435 VI. Concluding Remarks 441 References 442 VI. Concluding Remarks 441 References 442 I. Introduction 445 I. Cosolvent Control of Protein Solut	VI. The Missing Information and How to Obtain It	413
No Stide Chains 413 B. Solvation of the Backbone of the F Form 414 C. Loss of the Conditional Solvation Gibbs Energies of the Various Side 414 D. Pairwise Correlations 415 E. Higher-Order Correlations 416 VII. Concluding Remarks 417 References 420 0. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 I. Introduction 421 II. Interaction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 427 V. Thermodynamic Compensation 428 V. Mathematical Porrolation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VII. Application to Nonpolar and Cosolvents with Proteins 445 I. Introduction 445	A. The Solvation Gibbs Energy of the Large Linear Polypeptide Having	
B. Solvation of the Backbone of the F Form 414 C. Loss of the Conditional Solvation Gibbs Energies of the Various Side 414 D. Pairwise Correlations 416 E. Higher-Order Correlations 416 VII. Concluding Remarks 417 References 420 0. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 I. Introduction 421 II. Experimental Examples 422 IV. Interaction Mechanisms and Compensation Vector Diagrams 423 V. Thermodynamic Compensation 421 A. Molecular Species 428 VI. Mathematical Formulation 423 V. Thermodynamic Compensation 423 V. Thermodynamic Compensation 423 V. Thermodynamic Compensation 433 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 444 I. Droduction 445 I. Notacut Effects on Equilibria Relative to Water 448	No Side Chains	413
C. Loss of the Conditional Solvation Gibbs Energies of the Various Side Chains 414 D. Pairwise Correlations 415 E. Higher-Order Correlations 416 VII. Concluding Remarks 417 References 420 0. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 I. Introduction 421 I. Introduction 421 II. Interaction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 427 A. Molecular Species 422 VI. Mathematical Formulation 421 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 435 VII. Application Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 445 I. Introduction 143 I. Introduction 50 Standard Partial Entropies 445 I. Introduction 445 I. Introduction 446 A. Binding of Cosolvents with Proteins 445 I. Introduction 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions 451 D. Relation Between Transfer Free Energy and Preferential Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interaction 453 B. Inadequacy of the Site Binding Treatment 455 C. Why Precipitants Are Not Necessarily Stabilizers 461 V. Preferential Binding as Exchange at Sites 461 A. Classical Site Binding Treatment 462 B. Binadequacy of the Site Binding Treatment 462 C. Preferential Binding as Exchange at Sites 461 V. Preferential Binding as Exchange at Sites 461 V. Preferential Binding as the Binding Treatment 462 C. Preferential Binding as Exchange at Sites 461 V. Preferential Binding as the Binding Treatment 462 C. Preferenti	B. Solvation of the Backbone of the F Form	414
Chains 414 D. Pairwise Correlations 416 E. Higher-Order Correlations 416 VII. Concluding Remarks 417 References 420 0. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 I. Introduction 421 II. Experimental Examples 422 III. Intreaction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 425 V. Thermodynamic Compensation 426 V. Thermodynamic Compensation 427 A. Molecular Species 428 VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 C. Solvation Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 441 I. Introduction 445 I. Introduction 445 I. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 B. What Is Binding? 449 A. Theremodynamic Definition of Binding <	C. Loss of the Conditional Solvation Gibbs Energies of the Various Side	
D. Pairwise Correlations 415 E. Higher-Order Correlations 416 VII. Concluding Remarks 417 References 420 (0. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 I. Introduction 421 II. Experimental Examples 422 III. Interaction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation Vector Diagrams 423 IV. Examples of Partial Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 427 A. Molecular Species 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 433 G. Solvation Mechanism 445 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 445 I. Introduction 445 II. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. B. light Binding 7 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 A. Thermodynamic Definition of Binding 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 451 D. Relation Between Transfer Free Energy 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 451 D. Relation Between Transfer Free Energy 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 451 D. Relation Between Transfer Free Energy 449 B. Binding as Exchange at Sites 461 V. Preferential Interactions and Binding Treatment 452 C. Why Precipitants Are Not Necessarily Stabilizers 461 V. Preferential Binding as Exchange at Sites 461 V. Prefere	Chains	414
E. Higher-Order Correlations 416 VII. Concluding Remarks 417 References 420 0. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 II. Experimental Examples 422 III. Interaction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 425 V. Thermodynamic Compensation 427 A. Molecular Species 428 VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 442 I. Preferential Interactions of Water and Cosolvents with Proteins 445 I. Introduction 445 I. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equili	D. Pairwise Correlations	415
VII. Concluding Remarks 417 References 420 10. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 I. Introduction 421 II. Experimental Examples 422 III. Interaction Mechanisms and Compensation Vector Diagrams 422 III. Interaction Mechanisms and Compensation Vector Diagrams 423 VI. Xamples of Partial Compensation 425 V. Thermodynamic Compensation 427 A. Molecular Species 428 VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 439 VII. Concluding Remarks 441 References 442 II. Preferential Interactions of Water and Cosolvents with Proteins 445 II. Concluding Remarks 444 References 445 II. Concluding Remarks 445 II. Concluding Remarks 445 II. Concluding Remarks 445 II. Introduction 446	E. Higher-Order Correlations	416
References 420 10. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 I. Introduction 421 II. Experimental Examples 422 III. Interaction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 427 V. Thermodynamic Compensation 427 A. Molecular Species 428 VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 433 C. Solvation Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Application to Nonpolar Solutes in Water 442 References 442 II. Orncluding Remarks 441 References 442 II. Cosolvent Control of Protein Solution Stability and State of Dispersion 445 I. Introduction 445 II. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 A. Thermodynamic Definition of Binding 453 J. Horoduction 453 B. Binding IS Replacement of Water Pub Ligand at a Site 450	VII. Concluding Remarks	417
0. Thermodynamic Mechanisms for Enthalpy-Entropy compensation 421 I. Introduction 421 II. Experimental Examples 422 III. Interaction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 425 V. Thermodynamic Compensation 427 A. Molecular Species 428 VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 433 A. Delphic Dissection of Standard Partial Entropies 439 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 442 II. Concluding Remarks 441 References 442 II. Concluding Cosolvent and Displacement of Reaction Equilibria 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. Binding Is Replacement of Water by Ligand at a Site 450 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 B. Binding Is	References	420
I. Introduction 421 II. Experimental Examples 422 III. Interaction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 425 V. Thermodynamic Compensation 427 A. Molecular Species 428 VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 442 II. Preferential Interactions of Water and Cosolvents with Proteins 445 II. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 A. Thermodynamic Definition of Binding 450 C. The Wyman Slope Is the Change in Thermo	10. Thermodynamic Mechanisms for Enthalpy-Entropy compensation	421
II. Experimental Examples 422 III. Interaction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 425 V. Thermodynamic Compensation 427 A. Molecular Species 428 VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VII. Concluding Remarks 441 References 442 II. Conclucting Remarks 441 I. Introduction 445 II. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 B. Binding Is Replacement of water by Ligand at a Site 450	I. Introduction	421
III. Interaction Mechanisms and Compensation Vector Diagrams 423 IV. Examples of Partial Compensation 425 V. Thermodynamic Compensation 427 A. Molecular Species 428 VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 433 A. Delphic Dissection of Standard Partial Entropies 439 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 442 II. Preferential Interactions of Water and Cosolvents with Proteins 445 II. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 A. Thermodynamic Definition of Binding 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 453	II. Experimental Examples	422
IV. Examples of Partial Compensation 425 V. Thermodynamic Compensation 427 A. Molecular Species 428 VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 442 II. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wynan Slope Is the Change in Thermodynamic Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interaction 452 V. How Transfer Free Energy Modulates Protein Reactions 453 <	III. Interaction Mechanisms and Compensation Vector Diagrams	423
V. Thermodynamic Compensation 427 A. Molecular Species 428 VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 442 II. Preferential Interactions of Water and Cosolvents with Proteins 445 I. Introduction 445 II. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 A. Thereindynamic Definition of Binding 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interaction 453 <td>IV. Examples of Partial Compensation</td> <td>425</td>	IV. Examples of Partial Compensation	425
A. Molecular Species 428 VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 442 1. Deroteution 445 I. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 452 IV. How Transfer Free Energy Modulates Protein Reactions 453 A. Precipitation 453 B. Inadequacy of the Site Binding Treatment 455 C. Why Precipitatis Are Not Necessarily Stabili	V. Thermodynamic Compensation	427
VI. Mathematical Formulation 431 A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 442 I. Preferential Interactions of Water and Cosolvents with Proteins 445 I. Introduction 445 II. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 B. Binding IS Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 451 IV. How Transfer Free Energy Modulates Protein Reactions 453 B. Inadequacy of the Site Binding Treatment 455 C. Why Precipitants Are Not Necessarily Stabilizers 461 V. Preferential Binding as the Balance Batween Mater and Ligand Binding 453 B. Inadequacy of the Site Bindin	A. Molecular Species	428
A. Standard Partial Enthalpies and Entropies in Dilute Solutions 433 B. Molar-Shift Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VII. Concluding Remarks 441 References 442 II. Preferential Interactions of Water and Cosolvents with Proteins 445 I. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interactions 453 B. Inadequacy of the Site Binding Treatment 455 C. Why Precipitants Are Not Necessarily Stabilizers 461 V. Preferential Binding as Exchange at Sites: Weak and Strong Binding 462 D. Preferential Binding as Exchange at Sites: Weak and	VI. Mathematical Formulation	431
B. Molar-Shift Mechanism 433 C. Solvation Mechanism 435 VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 442 11. Preferential Interactions of Water and Cosolvents with Proteins 445 I. I. coolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 A. Thermodynamic Definition of Binding 449 B. Binding Is Replacement of water by Ligand at a Site 453 O. The Wyman Slope Is the Change in Thermodynamic Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interaction 453 R. Precipitation 453 B. Inadequacy of the Site Binding Treatment 455 C. Why Precipitants Are Not Necessarily Stabilizers 461 V. Preferential Interactions and Binding at Sites 461 A. Classical Site Binding T	A. Standard Partial Enthalpies and Entropies in Dilute Solutions	433
C. Solvation Mechanism435VII. Application to Nonpolar Solutes in Water438A. Delphic Dissection of Standard Partial Entropies439VIII. Concluding Remarks441References442 1. Preferential Interactions of Water and Cosolvents with Proteins 445I. Introduction445I. Cosolvent Control of Protein Solution Stability and State of Dispersion446A. Binding of Cosolvent and Displacement of Reaction Equilibria446B. What Is Binding?447C. Cosolvent Effects on Equilibria Relative to Water448III. Relation Between Preferential Interactions and Transfer Free Energy449A. Thermodynamic Definition of Binding449B. Binding Is Replacement of water by Ligand at a Site450C. The Wyman Slope Is the Change in Thermodynamic Interaction451J. Netlation Between Transfer Free Energy and Preferential Interaction453A. Precipitation453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment465C. Preferential Binding as Exchange at Sites: Weak and Strong Binding457D. Preterential Binding as the Balance Between Water and Ligand Binding453D. Preferential Binding as the Balance Between Water and Ligand Binding465G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects	B. Molar-Shift Mechanism	433
VII. Application to Nonpolar Solutes in Water 438 A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 442 11. Preferential Interactions of Water and Cosolvents with Proteins 445 I. Introduction 445 II. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 A. Thermodynamic Definition of Binding 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interaction 452 IV. How Transfer Free Energy Modulates Protein Reactions 453 A. Classical Site Binding Treatment 453 C. Preferential Interactions and Binding at Sites 461 V. Preferential Interactions and Binding at Sites 461 V. Preferential Interactions and Binding at Sites 462	C. Solvation Mechanism	435
A. Delphic Dissection of Standard Partial Entropies 439 VIII. Concluding Remarks 441 References 442 1. Preferential Interactions of Water and Cosolvents with Proteins 445 I. Introduction 445 I. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 A. Thermodynamic Definition of Binding 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 451 IV. How Transfer Free Energy Modulates Protein Reactions 453 A. Precipitation 453 B. Inadequacy of the Site Binding Treatment 455 C. Preferential Binding as Exchange at Sites 461 A. Classical Site Binding Treatment 462 B. Inadequacy of the Site Binding Treatment 462 C. Preferential Binding as the Balance Between Water and Ligand Binding 463 D. Preferential Binding as	VII. Application to Nonpolar Solutes in Water	438
VIII. Concluding Remarks 441 References 442 I. Preferential Interactions of Water and Cosolvents with Proteins 445 II. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 A. Thermodynamic Definition of Binding 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interaction 453 B. Inadequacy of the Site Binding Treatment 453 C. Why Precipitants Are Not Necessarily Stabilizers 461 V. Preferential Interactions and Binding at Sites 461 A. Classical Site Binding Treatment 462 D. Preferential Binding as Exchange at Sites: Weak and Strong Binding 463 D. Preferential Binding as the Balance Between Water and Ligand Binding 467 F. Relation Between Global Preferential Interactions and Exchange at Sites 467	A. Delphic Dissection of Standard Partial Entropies	439
References442 11. Preferential Interactions of Water and Cosolvents with Proteins445 I. Introduction445II. Cosolvent Control of Protein Solution Stability and State of Dispersion446A. Binding of Cosolvent and Displacement of Reaction Equilibria446B. What Is Binding?447C. Cosolvent Effects on Equilibria Relative to Water448III. Relation Between Preferential Interactions and Transfer Free Energy449A. Thermodynamic Definition of Binding449B. Binding Is Replacement of water by Ligand at a Site450C. The Wyman Slope Is the Change in Thermodynamic Interaction451D. Relation Between Transfer Free Energy and Preferential Interaction452IV. How Transfer Free Energy Modulates Protein Reactions453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding474VII. Why Are Some Cosolvents Preferentially Exclusion Balance478 <td>VIII. Concluding Remarks</td> <td>441</td>	VIII. Concluding Remarks	441
11. Preferential Interactions of Water and Cosolvents with Proteins 445 I. Introduction 445 II. Cosolvent Control of Protein Solution Stability and State of Dispersion 446 A. Binding of Cosolvent and Displacement of Reaction Equilibria 446 B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 A. Thermodynamic Definition of Binding 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interaction 453 A. Precipitation 453 B. Inadequacy of the Site Binding Treatment 455 C. Why Precipitants Are Not Necessarily Stabilizers 461 V. Preferential Binding as Exchange at Sites: 462 B. Inadequacy of the Site Binding Treatment 462 C. Preferential Binding as the Balance Between Water and Ligand Binding 463 D. Preferential Binding as the Balance Between Water and Ligand Binding 465 E. Meaning of Thermodynamic Indifference 467 G. Direct Site Occupancy	References	442
I. Introduction445II. Cosolvent Control of Protein Solution Stability and State of Dispersion446A. Binding of Cosolvent and Displacement of Reaction Equilibria446B. What Is Binding?447C. Cosolvent Effects on Equilibria Relative to Water448III. Relation Between Preferential Interactions and Transfer Free Energy449A. Thermodynamic Definition of Binding449B. Binding Is Replacement of water by Ligand at a Site450C. The Wyman Slope Is the Change in Thermodynamic Interaction451D. Relation Between Transfer Free Energy and Preferential Interaction453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment465C. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding474VII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	1. Preferential Interactions of Water and Cosolvents with Proteins	445
II. Cosolvent Control of Protein Solution Stability and State of Dispersion446A. Binding of Cosolvent and Displacement of Reaction Equilibria446B. What Is Binding?447C. Cosolvent Effects on Equilibria Relative to Water448III. Relation Between Preferential Interactions and Transfer Free Energy449A. Thermodynamic Definition of Binding449B. Binding Is Replacement of water by Ligand at a Site450C. The Wyman Slope Is the Change in Thermodynamic Interaction451D. Relation Between Transfer Free Energy and Preferential Interaction453A. Precipitation453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Binding as Exchange at Sites:461C. Preferential Binding as the Balance Between Water and Ligand Binding463D. Preferential Binding of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding474VII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	I. Introduction	445
A. Binding of Cosolvent and Displacement of Reaction Equilibria446B. What Is Binding?447C. Cosolvent Effects on Equilibria Relative to Water448III. Relation Between Preferential Interactions and Transfer Free Energy449A. Thermodynamic Definition of Binding449B. Binding Is Replacement of water by Ligand at a Site450C. The Wyman Slope Is the Change in Thermodynamic Interaction451D. Relation Between Transfer Free Energy and Preferential Interaction452IV. How Transfer Free Energy Modulates Protein Reactions453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Treatment462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites461H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding474VII. Kony Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	II. Cosolvent Control of Protein Solution Stability and State of Dispersion	446
B. What Is Binding? 447 C. Cosolvent Effects on Equilibria Relative to Water 448 III. Relation Between Preferential Interactions and Transfer Free Energy 449 A. Thermodynamic Definition of Binding 449 B. Binding Is Replacement of water by Ligand at a Site 450 C. The Wyman Slope Is the Change in Thermodynamic Interaction 451 D. Relation Between Transfer Free Energy and Preferential Interaction 453 A. Precipitation 453 B. Inadequacy of the Site Binding Treatment 455 C. Why Precipitants Are Not Necessarily Stabilizers 461 V. Preferential Interactions and Binding at Sites 461 A. Classical Site Binding Theory 462 B. Inadequacy of the Site Binding Treatment 462 C. Preferential Binding as the Balance Between Water and Ligand Binding 463 D. Preferential Binding as the Balance Between Water and Ligand Binding 467 F. Relation Between Global Preferential Interactions and Exchange at Sites 467 G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction 470 H. Weak Effects as Results of Strong Interactions at Sites 471 VI. Meaning of Sites in Weak Binding 474 <td< td=""><td>A. Binding of Cosolvent and Displacement of Reaction Equilibria</td><td>446</td></td<>	A. Binding of Cosolvent and Displacement of Reaction Equilibria	446
C. Cosolvent Effects on Equilibria Relative to Water448III. Relation Between Preferential Interactions and Transfer Free Energy449A. Thermodynamic Definition of Binding449B. Binding Is Replacement of water by Ligand at a Site450C. The Wyman Slope Is the Change in Thermodynamic Interaction451D. Relation Between Transfer Free Energy and Preferential Interaction453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance475	B. What Is Binding?	447
III. Relation Between Preferential Interactions and Transfer Free Energy449A. Thermodynamic Definition of Binding449B. Binding Is Replacement of water by Ligand at a Site450C. The Wyman Slope Is the Change in Thermodynamic Interaction451D. Relation Between Transfer Free Energy and Preferential Interaction452IV. How Transfer Free Energy Modulates Protein Reactions453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance475	C. Cosolvent Effects on Equilibria Relative to Water	448
A. Thermodynamic Definition of Binding449B. Binding Is Replacement of water by Ligand at a Site450C. The Wyman Slope Is the Change in Thermodynamic Interaction451D. Relation Between Transfer Free Energy and Preferential Interaction452IV. How Transfer Free Energy Modulates Protein Reactions453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	III. Relation Between Preferential Interactions and Transfer Free Energy	449
B. Binding Is Replacement of water by Ligand at a Site450C. The Wyman Slope Is the Change in Thermodynamic Interaction451D. Relation Between Transfer Free Energy and Preferential Interaction452IV. How Transfer Free Energy Modulates Protein Reactions453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Treatment462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478D. Screener478	A. Thermodynamic Definition of Binding	449
C. The Wyman Slope Is the Change in Thermodynamic Interaction451D. Relation Between Transfer Free Energy and Preferential Interaction452IV. How Transfer Free Energy Modulates Protein Reactions453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites461VI. Meak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding VIII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	B. Binding Is Replacement of water by Ligand at a Site	450
D. Relation Between Transfer Free Energy and Preferential Interaction452IV. How Transfer Free Energy Modulates Protein Reactions453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	C. The Wyman Slope Is the Change in Thermodynamic Interaction	451
IV. How Transfer Free Energy Modulates Protein Reactions453A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding474VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	D. Relation Between Transfer Free Energy and Preferential Interaction	452
A. Precipitation453B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	IV. How Transfer Free Energy Modulates Protein Reactions	453
B. Inadequacy of the Site Binding Treatment455C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	A. Precipitation	453
C. Why Precipitants Are Not Necessarily Stabilizers461V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VII. Meaning of Sites in Weak Binding474VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	B. Inadequacy of the Site Binding Treatment	455
V. Preferential Interactions and Binding at Sites461A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VII. Meaning of Sites in Weak Binding VIII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	C. Why Precipitants Are Not Necessarily Stabilizers	461
A. Classical Site Binding Theory462B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance475	V. Preferential Interactions and Binding at Sites	461
B. Inadequacy of the Site Binding Treatment462C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	A. Classical Site Binding Theory	462
C. Preferential Binding as Exchange at Sites: Weak and Strong Binding463D. Preferential Binding as the Balance Between Water and Ligand Binding To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding474VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	B. Inadequacy of the Site Binding Treatment	462
To a Protein: Meaning of Zero "Binding"465E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic470Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding474VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	C. Preferential Binding as Exchange at Sites: Weak and Strong Binding D. Preferential Binding as the Balance Between Water and Ligand Binding	463
E. Meaning of Thermodynamic Indifference467F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic470Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding474VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	To a Protein: Meaning of Zero "Binding"	465
F. Relation Between Global Preferential Interactions and Exchange at Sites467G. Direct Site Occupancy Measurements Cannot Define the Thermodynamic Interaction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding474VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	E. Meaning of Thermodynamic Indifference	467
Interaction 470 H. Weak Effects as Results of Strong Interactions at Sites 471 VI. Meaning of Sites in Weak Binding 474 VII. Why Are Some Cosolvents Preferentially Excluded from Protein 475 VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance 478	F. Relation Between Global Preferential Interactions and Exchange at Sites	467
Hiteraction470H. Weak Effects as Results of Strong Interactions at Sites471VI. Meaning of Sites in Weak Binding474VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	Just of the occupancy measurements Cannot Define the Informodynamic	170
H. Weak Effects as Results of Strong Interactions at Sites4/1VI. Meaning of Sites in Weak Binding474VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	Interaction	4/0
v1. Meaning of Sites in weak Binding4/4VII. Why Are Some Cosolvents Preferentially Excluded from Protein475VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478	H. Weak Effects as Results of Strong Interactions at Sites	4/1
vii. why Are Some Cosolvents Preferentially Excluded from Protein4/5VIII. Conclusion: Competition, Compensation, Binding-Exclusion Balance478Preference478	vi. Meaning of Siles in weak Binding	4/4
viii. Conclusion: Competition, Compensation, Binding-Exclusion Balance 4/8	vii. why Are Some Cosolvents Preferentially Excluded from Protein	4/5
11-1	vin. Conclusion: Competition, Compensation, Binding-Exclusion Balance	4/8

12. Thermodynamic Nonideality and Protein Solvation		483
I. Introduction		483
II. Quantitative Interpretation of Partial Specific Volumes		484
A. Traditional Approach		486
B. Choice of Concentration Scale		486
C. Direct Thermodynamic Interpretation		489
D. Equivalence of Treatments		491
III. Virial Coefficients from Density Measurements		492
A. Protein-Small Nonelectrolyte Systems		493
B. Osmolytes as Inert Solute		495
C. Excluded Volume Interpretation		495
IV. Consideration of Small Solutes as Effective Spheres		496
A. Interpretation of Isopiestic Measurements		496
B. Freezing Point Depression Data		500
C. Frontal Gel Chromatography of Sucrose		500
D. Validity of the Proposition		502
V. Effective Thermodynamic Radii of Globular Proteins		503
A. Evaluation from Self-Covolume Measurements		504
B. Evaluation from Protein-Small Solute Covolume		507
C. Relationship to the Stokes Radius		508
VI. Effects of Small Solutes on Protein Isomerization		510
A. pH-Induced Unfolding of Proteins		512
B. Ligand-Induced and Preexisting Isomerizations		513
C. Thermal Unfolding of Proteins		515
VII. Concluding Remarks		516
References		518
13. Molecular Basis for Protein Separations	521	
I. Introduction		521
II. Protein Reactivity and Conformation Governance in Separations		524
III. The Plasma Albumin Prototype: Conformation Behavior, Reactivity Toward		
Ligands, Consequences in Coprecipitation, and Cocrystallization		526
IV. Salt Counterion Contraction of Protein from Acid-Expanded Conformation		528
V. Cocrystallization of Proteins with Inorganic and Organic Ionic Ligands		530
VI. Water Inside, Water Outside Proteins		533
VII. Protein Precipitation from Four-Carbon Cosolvent, t-Butanol		536
VIII. Matrix Coprecipitation by Organic Ion Ligands		540
IX. Inorganic and Organic Ion-Binding Thermochemistry		546
References		550

Index