Contact "Library Services" : info@dss.go.th

575.764 FRA

Contents

1	The	Biolog	ical System of Elements	1			
	1.1	Princi	ples of Element Distribution in Plants	1			
		1.1.1	Distribution Patterns of Chemical Elements in Plants	1			
		1.1.2	Biochemical Essentiality of Elements in the Light				
			of Enzymatic Reactions	4			
		1.1.3	Soil and Geochemistry: Support and Storage/Buffer				
			System for Biology	6			
	1.2	Metho	odology of Inquiries into the Biological System				
		of Elements					
		1.2.1	Correlation Analysis of Element Distribution				
			in Multiple Plant Species	11			
		1.2.2	Fundamentals of the Correlation-Chemical				
			Analysis of Element Abundances	12			
		1.2.3	Stoichiometric Network Analysis	13			
2	Autocatalytic Processes and the Role of Essential Elements						
	in P	lant Gr	owth	17			
	2.1	Bioma	ass Stability in the Light of Gibbs's Phase Rule	17			
	2.2	lination-Chemical Control of Element Uptake	19				
		2.2.1	Metal Complexes in Biology: Definition of Complex				
			Formation Constants	19			
		2.2.2	Electrochemical Parameters of Biologically				
			Relevant Ligands	20			
		2.2.3	A Method to Calculate Metal–Ligand	•			
			Association Equilibria	21			
		2.2.4	How Does the Electrochemical Ligand Parameter				
			Influence Real Versus Possible Hapticity of Some				
			Polydentate Ligand?	30			
		2.2.5	Translating Complex Stabilities into Bioconcentration				
			Factor (BCF) Data: The k' Term of Element				
			Fractionation	40			
		2.2.6	Binding Stability of Substrates and Products				
			in Catalytic Cycles: How Does Ligand Sensitivity				
			Influence Reaction Kinetics?	41			
		2.2.7	The Electrochemical Ligand Parameter,				
			Metal Affinities and Chemical Ecology	52			
		2.2.8	Implications of Some Theorems from Stoichiometric				
			Network Analysis (SNA) with Respect to Stability				
			and Function Biochemical Systems	67			

		2.2.9	Matter (Flow) Balance, Metabolic Strategy				
			and Estimation of Loss Processes (Exit Order)				
			Within Autocatalytic Biochemical Cycles	72			
		2.2.10	The Topology of Autocatalytic Feedback Patterns				
			in Living Systems	85			
		2.2.11	SNA and Metal Transport in Terrestrial Plants	88			
		2.2.12	Stoichiometry of Terrestrial Plants and Its Implications				
			According to SNA	95			
		2.2.13	A Comprehensive Analysis of Autocatalytic Processes				
			Within Some Photosynthetic Plant	110			
	2.3	Some R	Remarks on Chemical Ecology	118			
		2.3.1	Constraints of Essentiality Caused by Consumers	118			
		2.3.2	Trophic Nets	121			
		2.3.3	Succession and Ecological Stoichiometry Including				
			Intermetal Ratios	124			
		2.3.4	A Corollary on Bioindication	129			
3	A C	ausal M	odel of Biochemical Essentiality	131			
	3.1	Influen	ce of Intrinsic Bonding Stability and Ligand				
	-	Sensitiv	vity on the Biocatalytic Properties of Metal Ions	131			
	3.2	Comple	ex Stability in Relation to Other Bioorganic				
		Parame	ters	134			
	3.3	Phase S	Structures and Histology Revisited	145			
	3.4	Scope of	of the Essentiality Model	149			
4	The	he Evolution of Essentiality					
	4.1	Evoluti	on and Biochemical Catalysis	153			
	4.2	A Three	e-Step-Model for Uptake and Functionalization				
		of Meta	al Ions Enforced by Chemical Evolution				
		Itself (H	Bootstrap)	155			
		4.2.1	Fractionation of Chemical Elements in and by Polymeric				
			Antecessors of Biomass During Chemical Evolution	161			
	4.3	The Th	ree-Functions-Rule as a Controlling Factor				
		in the C	Drigins of Essentiality	163			
	4.4	Biogeo	chemical Fractionation Processes and Essentiality				
		Patterns	s in Different Taxa Under Changing Biogeochemical				
		Bounda	ary Conditions	168			
Re	References						
-							
In	dex			191			