CONTENTS

Contributors xv
Preface xx

1. The Human Insulin Superfamily of Polypeptide Hormones 1
Fazel Shabanpoor, Frances Separovic, and John D. Wade

 I. Introduction 2
 II. Relaxin Peptide Hormone Subfamily 10
 III. Concluding Remarks 22
 Acknowledgments 22
 References 22

2. The Structure and Function of Insulin: Decoding the TR Transition 33
Michael A. Weiss

 I. Introduction 34
 II. Structure–Activity Relationships 38
 III. Implications for the Genetics of Diabetes Mellitus 44
 IV. Concluding Remarks 45
 Acknowledgments 46
 References 46

3. Molecular Mechanisms of Differential Intracellular Signaling From the Insulin Receptor 51
Maja Jensen and Pierre De Meyts

 I. Overview 52
 II. Insulin and the IR 53
 III. Modulation of IR Activity 57
 IV. Differential Activation of the IR 63
 V. Conclusions/Final Words 67
 References 68
4. c-Abl and Insulin Receptor Signalling
Marco Genua, Giuseppe Pandini, Maria Francesca Cassarino, Rosa Linda Messina, and Francesco Frasca

I. Introduction 78
II. Insulin and IGF-IRs 79
III. Metabolic Versus Mitogenic Effect of IR 83
IV. c-Abl Tyrosine Kinase 87
V. c-Abl and IR Signalling 93
VI. Concluding Remarks 98
Acknowledgments 99
References 99

5. CXCL14 and Insulin Action
Takahiko Hara and Yuki Nakayama

I. Introduction 108
II. Basic Properties of CXCL14 109
III. Biological Activities of CXCL14 113
IV. Novel Functions of CXCL14 Revealed by Knockout Mice 115
V. Signal Cross-Talk Between CXCL14 and Insulin 119
VI. CXCL14 as a Metabolic Regulator 119
VII. Conclusions 121
References 121

6. Crosstalk Between Growth Hormone and Insulin Signaling
Jie Xu and Joseph L. Messina

I. Introduction 126
II. GH Signaling 127
III. Insulin Signaling 130
IV. Regulation of GH Signaling by Insulin 131
V. Regulation of Insulin Signaling by Chronic GH 140
VI. Conclusions 142
Acknowledgments 143
References 143

7. Intracellular Retention and Insulin-Stimulated Mobilization of GLUT4 Glucose Transporters
Bradley R. Rubin and Jonathan S. Bogan

I. Introduction 156
II. GLUT4 Storage Vesicles (GSVs) 158
III. Insulin-Regulated Aminopeptidase (IRAP) 162

8. Compartmentalization and Regulation of GLUT4
Craig A. Eyster and Ann Louise Olson

I. Introduction 143
II. Insulin Signaling to GLUT4 Vesicles 144
III. GLUT4 Vesicle Membrane Traffic 145
IV. GLUT4 Vesicle Fusion 145
V. Conclusions 146
Acknowledgments 147
References 147

9. Nutrient Modulation of Insulin Secretion
Nimbe Torres, Lilia Noriega, and Ana M. M. Lopes

I. Introduction 155
II. Overview of Insulin Secretion 156
III. Nutrient Regulation of Insulin Secretion 159
References 161

10. How Insulin Regulates Glucose Transport
Joseph M. Muretta and Cynthia C. Holt

I. Introduction 165
II. Historical Perspective 166
III. Current Views and Controversies 167
IV. Conclusions and Future Directions 169
References 170

11. Spatio-Temporal Dynamics of 4,5-Trisphosphate Signalling
Anders Tengholm and Olof Idevall

I. Introduction 174
II. Synthesis and Degradation of 4,5-InsP3 175
III. Kinase Activity of DAGK and PLCδ 176
IV. ER to Cytoplasm Signalling 177
V. ER-Dependent Signalling in Liver 178
Acknowledgments 179
References 179
12. Serine Kinases of Insulin Receptor Substrate Proteins

Sigalit Boura-Haifon and Yehiel Zick

I. Introduction
II. Insulin and IGF-1 Signaling
III. Regulation of Insulin and IGF-1 Signaling: Role of Ser/Thr Phosphorylation of IRS Proteins
IV. The Consequences of Ser Phosphorylation of IRS Proteins
V. Ser Phosphorylation of IRS Proteins as an Array Phenomenon
VI. Summary
References

13. Phosphorylation of IRS Proteins: Yin-Yang Regulation of Insulin Signaling

Xiao Jian Sun and Feng Liu

I. Introduction
II. Discovery of the IRS Proteins
III. Molecular Structure of the IRS Proteins
IV. Biological Function of IRS Proteins in Insulin Action
V. The Role of IRS Serine Phosphorylation in Mediating the Crosstalk with Other Signaling Pathways
VI. Mechanisms Underlying IRS Serine Phosphorylation-Induced Insulin Resistance
VII. Conclusion
References

14. IRS-2 and Its Involvement in Diabetes and Aging

Jiandi Zhang and Tian-Qiang Sun

I. Introduction
II. Identification of IRS-2 Protein
III. Basic Structure of IRS Family Proteins
IV. Involvement of IRS Proteins in Other Signaling Pathways
V. IRS-2 Protein is Well Conserved Across Species
VI. IRS-2, and Its Regulation in Energy Homeostasis
References
VII. Searching for the Regulatory Factor of IRS-2 Transcription	395
VIII. Phenotype of IRS-2 Null Mice	397
IX. The Role of IRS-2 in Female Reproduction	400
X. The Putative Role of IRS-2 in Aging Process	400
XI. Summary	402
References	403

15. Glucose-Dependent Insulinotropic Polypeptide (Gastric Inhibitory Polypeptide; GIP) 409
Christopher H. S. McIntosh, Scott Widenmaier, and Su-jin Kim

I. Introduction	410
II. Glucose-Dependent Insulinotropic Polypeptide (GIP)	412
III. The GIP Gene and Precursor	415
IV. GIP Secretion and Metabolism	417
V. The GIP Receptor	421
VI. Actions of GIP	425
VII. GIP-Activated Signal-Transduction Pathways	432
VIII. Pathophysiology of GIP	439
Acknowledgments	444
References	444

16. Insulin Granule Biogenesis, Trafficking and Exocytosis 473
June Chunqiu Hou, Le Min, and Jeffrey E. Pessin

I. Introduction	474
II. Section I	476
III. Section II	480
IV. Section III	484
V. Section IV	491
References	494

17. Glucose, Regulator of Survival and Phenotype of Pancreatic Beta Cells 507
Geert A. Martens and Daniel Pipeleers

I. Scope	508
II. Beta Cell Handling of Glucose: Metabolic Specializations to Ensure Low-Affinity/High Capacity Glucose Sensing	509
III. Glucose as Regulator of the Differentiated Beta Cell Phenotype	512
IV. Glucose Regulation of Beta Cell Number	518
V. Beta Cell Handling of Threatening High and Low Glucose Levels	521
Acknowledgments	530
References	530
22. Structure, Function, and Regulation of Insulin-Degrading Enzyme
Raymond E. Hulse, Luis A. Ralat, and Wei-Jen Tang

I. Introduction 636
II. Structure of IDE 637
III. The Regulation of IDE Activity 642
IV. Conclusion 645
Acknowledgments 645
References 645

23. Modification of Androgen Receptor Function by Igf-1 Signaling: Implications in the Mechanism of Refractory Prostate Carcinoma
Toshihiko Yanase and WuQiang Fan

I. Androgen Receptor Signaling 651
II. IGF Signaling and Foxo-1 653
III. Interaction between AR and Insulin/IGF-1 Signaling 654
IV. Clinical Implications of Interactions between IGF-1 Signaling and AR 659
V. Conclusion 662
Acknowledgments 663
References 663

24. Insulin-Like Growth Factor-2/Mannose-6 Phosphate Receptors
Hesham M. El-Shewy and Louis M. Luttrell

I. Introduction 668
II. The IGF-2/M6P Receptor 671
III. Functions of the IGF-2/M6P Receptor 678
IV. Conclusions 685
References 685

25. Interactions of IGF-II with the IGF2R/Cation-Independent Mannose-6-Phosphate Receptor: Mechanism and Biological Outcomes
J. Brown, E. Y. Jones, and B. E. Forbes

I. Introduction 700
II. The Mechanism of the IGF2R:IGF-II Interaction 701
III. Conclusion 713
References 714

Index 721