Ref. 612.399 vit v.81

CONTENTS

Contributors Preface	xv xxi
 Enzymatic Formation of Anandamide Yasuo Okamoto, Kazuhito Tsuboi, and Natsuo Ueda 	1
 The Transacylation–Phosphodiesterase Pathway for Anandamide Formation NAT NAPE-PLD Alternative Pathways Forming NAEs from NAPEs Conclusions References 	2 4 9 15 18 19
2. Organized Trafficking of Anandamide and Related Lipids Marla L. Yates and Eric L. Barker	25
I. AEA and the Endocannabinoid System II. AEA Transport Acknowledgment References	26 31 45 45
3. Biosynthesis of Oleamide Gregory P. Mueller and William J. Driscoll	55
 Introduction Fatty Acid Amide Messengers: Structural Considerations Natural Occurrence of Oleamide Biologic Actions of Oleamide Proposed Mechanisms for the Biosynthesis of Oleamide Oleamide Biosynthesis by Peptidylglycine Alpha-amidating Monooxygenase Discovery of Cytochrome c as an Oleamide Synthase Cytochrome c also Catalyzes the Formation of Oleoylglycine 	56 56 57 58 59 60 62
and Other Long-Chain Fatty Acylamino Acids IX. Proposal for an Oleamide Synthesome	64 66

X. Apoptosis: A Model for the Mechanism and Regulation	
of Oleamide Biosynthesis	67
XI. Considerations for the investigation of Oleamide Biosynthesis	70
XII. Future Directions and Concluding Remarks	70
References	71
4. Anandamide Receptor Signal Transduction	79
Catherine E. Goodfellow and Michelle Glass	
I. Introduction	80
II. Cannabinoid Receptor 1	81
III. Cannabinoid Receptor 2	89
IV. Transient Receptor Potential Vanilloid 1	90
V. Evidence for Additional Receptors	92
VI. Concluding Remarks	98
References	99
5. Is GPR55 an Anandamide Receptor?	111
Andrew J. Brown and C. Robin Hiley	
I. Δ^9 -Tetrahydrocannabinol, CB ₁ , and C8 ₂ Receptors	112
II. Functional Evidence for Novel Cannabinoid Receptors	113
III. Genomics of G Protein-Coupled Cannabinoid Receptors	116
IV. The Orphan Receptor GPR55	117
V. Endogenous Ligands for GPR55	121
VI. GPR55 Cellular Signaling Pathways	123
VII. Interactions Between GPR55 and CB, Receptors	126
VIII. Conclusion: GPR55 as an Anandamide Receptor	128
References	133
6. The Endocannabinoid System During Development:	
Emphasis on Perinatal Events and Delayed Effects	139
Ester Fride, Nikolai Gobshtis, Hodaya Dahan, Aron Weller,	
Andrea Giuffrida, and Shimon Ben-Shabat	
1. Introduction	140
II. Early Gestation	141
III. Neural Development	146
IV. Postnatal Development	147
V. Effects of Developmental Manipulation of the	
ECS System on the Offspring	150
VI. Conclusions	152
Acknowledgments	153
References	153

7. Can	nabinoid Receptor CB1 Antagonists: State of the	
Art	and Challenges	159
Mau	rizio Bifulco, Antonietta Santoro, Chiara Laezza, and	
Anna	a Maria Malfitano	
1.	Introduction	160
1).	Endocannabinoid System: Control of Energy Balance	161
Ш.	Cannabinoid CB1 Receptors and CB1 Antagonists	162
IV.	CB1 Antagonists in the Treatment of Obesity and	
	Related Comorbidities	169
V.	Other Emerging Effects of CB1 Antagonists	176
VI.	Therapeutic Prospects	179
VII.	Conclusions	180
Ac	knowledgments	181
Ke	terences	181
0	al Conta anna a' Anna Chuathan Istan (Chuathan	
8. NOV	el Endogenous N-Acyl Glycines: Identification	
and	Characterization	191
Heat	her B. Bradshaw, Neta Rimmerman, Sherry SJ. Hu,	
Sum	ner Burstein, and J. Michael Walker	
١.	Historical View of Lipid Signaling Discoveries	192
u.	The Identification of Endogenous Signaling Lipids	-
	with Cannabimimetic Activity	192
ш.	Identification of Additional N-Acyl Amides	193
IV.	N-Arachidonoyl Glycine Biological Activity	194
V.	N-Arachidonoyl Glycine Biosynthesis	194
V1.	N-Palmitoyl Glycine Biological Activity	195
VII.	N-Palmitoyl Glycine Biosynthesis	197
VIII.	PalGly Metabolism	197
iX.	Identification and Characterization of Additional Members	_
	of the N-Acyl Glycines	198
X.	Biological Activity of Novel N-Acyl Glycines	200
XI.		201
Re	rerences	203
o. The	Endocannabinoid Anandamide: From Immunomodulation	
to N	europrotection. Implications for Multiple Sclerosis	207
Fern José	ando G. Correa, Leyre Mestre, Fabián Docagne, Borrell, and Carmen Guaza	
١.	Introduction	208
II.	AEA as a Neuroimmune Signal	212

x			Contents
	,		

HI.	Anandamide and Multiple Sclerosis	219
IV.	Concluding Remarks	223
A	cknowledgment	224
R	eferences	224
10. Ma	dulation of the Endocannabinoid-Degrading Enzyme	
Fat	ty Acid Amide Hydrolase by Follicle-Stimulating Hormone	231
Pao	la Grimaldi, Gianna Rossi, Giuseppina Catanzaro, and Mauro Macca	arrone
{	 Follicle-Stimulating Hormone: Signal Transduction and Molecular Targets 	232
п	Sertoli Cells: Activities and Biological Relevance	237
111	Overview of the Endocannabinoid System	230
iv	The ECS in Sertoli Cells	241
v	Regulation of FAAH by FSH in Sertoli Cells	243
VI.	FAAH Is an Integrator of Fertility Signals	244
VIL	Conclusions	254
A	cknowledgments	255
R	eferences	255
Cog Ada	nitive-, Neuroimmune-, and Energy Homeostasis-Related ptations to Stress	263
Ren	ato Malcher-Lopes and Marcelo Buzzi	
١.	Introduction	264
н.	The Arachidonic Acid Cascade	266
111.	Glucocorticoid-Mediated Inhibition of cPLA2-Dependent	
	AA Release from Membrane Phospholipids	269
IV.	Biosynthesis of the AA-Containing Endocannabinoids	
	AEA and 2-AG	271
V.	Nongenomic Glucocorticoid-Induced Activation of	
	Endocannabinoid Biosynthesis	274
VI.	Endocannabinoids Metabolization	278
VII.	Crosstalk Between GCs and COX_2 in the Control of	
	Neuroinflammation and Neuroprotection	282
V10.	Crossialk Belween GLS and COX_2 in the Control of	- 0 -
I V	Synaptic Masticity and Learning Processes	285
<u>ا</u> ٨.	Personantial of GC-Medialed Control of the Neufolmmune	-00
٨	koowladaments	268
A	chiomicusilicius	295
μ.	aferences	205

Con	ten	t5
-----	-----	----

12. Modulation of the Cys-Loop Ligand-Gated Ion Channels	
by ratty Acid and Cannabinolds	315
I. CB Receptor-Dependent and -Independent Effects	
of Endocannabinoids	316
II. Structure and Function of the Lys-Loop Leills	317
III. Initiation of 5-HT ₃ Receptors by Camabinoids	310
V Inhibition of nACh Receptors by Endocennabinoids	344 228
VI. Modulation of GABA ₂ Receptors by Endocarmabilities	320
VII. Concluding Discussion	330
References	331
13. Endogenous Cannabinoids and Neutrophil Chemotaxis	337
Douglas McHugh and Ruth A. Ross	
I. Cellular Motility and Neutrophils	338
II. The Endogenous Cannabinoid System	339
III. Cannabinoids Modulate Cell Migration	342
IV. Endocannabinoid Effects on Basal Locomotion of Neutrophils	343
V. Endocannabinoid Effects on Induced Migration of Neutrophils	343
VI. Cannabinoid Receptor Expression in Neutrophils	344
VII. Inhibition of Induced Migration: Which Receptors are Involved?	345
VIII. Inhibitory Signal Transduction Mechanisms: Receptor Crosstalk	350
IX. Inhibitory Signal Transouction Mechanisms: Disruption	
of the Adim Cytoskeleton	351
A. Conclusion	350
Reletences	357
14. CB1 Activity in Male Reproduction: Mammalian	
and Normammalian Animal Models	367
Riccardo Pierantoni, Gilda Cobellis, Rosaria Meccariello,	
Giovanna Cacciola, Rosanna Chianese, Teresa Chioccarelli,	
and Silvia Fasano	
I. Introduction	368
II. Receptor Properties	368
III. Brain-Pituitary Axis	371
IV. lestis	374
v. Excurrent Duct System	379
	302
Veletences	<u>۲</u> 0۲

15.	Anandamide and the Vanilloid Receptor (TRPV1)	389
	Attila Tóth, Peter M. Blumberg, and Judit Boczán	
	I. Cannabinoid and Vanilloid Receptors	390
	II. Biochemistry of Anandamide	392
	III. Anandamide as Vanilloid Receptor (TRPV1) Ligand	396
	IV. Other Anandamide Receptors	404
	V. Physiological Actions of Anandamide on TRPV1	404
	VI. Future Directions	410
	References	411
16.	Endocannabinoid System and Fear Conditioning	421
	Leonardo B. M. Resstel, Fabrício A. Moreira, and Francisco S. Guimarães	
	I. Introduction	421
	II. Fear Conditioning	423
	III. Influence of Endocannabinoids on Fear Conditioning	426
	IV. Brain Regions in which Endocannabinoids may Modulate	
	Fear Conditioning	429
	V. Conclusion	433
	References	433
17.	Regulation of Gene Transcription and Keratinocyte	
-	Differentiation by Anandamide	441
	Nicoletta Pasquariello, Sergio Oddi, Marinella Malaponti,	
	and Mauro Maccarrone	
	I. Introduction	442
	II. Epidermis	445
	III. Transcriptional Control of Skin Differentiation	453
	IV. Endocannabinoid System in Epidermis	455
	V. Modulation of the Endocannabinoid System in	
	Differentiating Keratinocytes	456
	VI. Repression of Gene Transcription by Anandamide	457
	VII. Conclusions	459
	Acknowledgments	460
	References	461
18.	Changes in the Endocannabinoid System May Give Insight	
	into new and Effective Treatments for Cancer	409
	Gianfranco Alpini and Sharon DeMorrow	
	I. Introduction	470
	II. Changes in the Endocannabinoid System in Cancer	471

III.	Antiproliferative Effects of Anandamide	473
IV.	Effects of AEA on Migration, Invasion, and Angiogenesis	476
V.	Targeting Degradation Enzymes of Cannabinoids as an	
	Anticancer Therapy	479
VI.	Tumor Promoting Effects of Anandamide	480
VII.	Conclusions	480
Ac	knowledgments	481
Re	ferences	481
10. Use	of Cannabinoids as a Novel Therapeutic Modality	
Agai	inst Autoimmune Hepatitis	487
Dup	I Danday Vankatash I. Hagda, Narandra P. Singh Larna Hafsath	4-,
Uday	Singh Swapan Pay Mitri Nagarkatti and Brakach S. Nagarkatti	
oua	Singh, Swapan kay, mizi nagarkati, and frakash S. nagarkati	
۱.	Introduction	488
II.	The Endogenous Cannabinoid System	489
III.	The Biosynthesis of Endocannabinoids	490
IV.	Endocannabinoid System is Autoprotective	490
V.	Autoimmune Hepatitis	492
VI.	Treatment Drawbacks	494
V11.	Cannabinoid/Endocannabinoid System in Hepatitis	494
VIII.	Conclusions and Future Directions	499
Ac	knowledgments	500
Re	ferences	500

Index

505