Contents

٠

xiii Preface **Chapter 15 Kinematics of Particles** 473 473 15.1 Introduction 474 15.2 General Rectilinear Motion 15.3 Graphical Interpretation of Displacement, Velocity, and Acceleration Diagrams for Rectilinear Motion 477 484 15.4 Rectilinear Motion with Constant Acceleration 15.5 Plane Curvilinear Motion-Normal and Tangential 490 Components 15.6 Plane Curvilinear Translation-Rectangular 495 Components 15.7 Plane Projectile Motion in Terms of Component 499 Motions 503 15.8 Relative Displacement, Velocity, and Acceleration 509 15.9 Summary 511 Problems **Chapter 16 Dynamics of Particles** 528 16.1 Introduction-Newton's Second Law 528 530 16.2 Units 531 16.3 Dynamics of a Particle in Rectilinear Translation 16.4 Dynamics of Connected Particles in Rectilinear 535 Translation 16.5 Dynamics of a Particle in Plane Curvilinear Motion-Normal and Tangential Components 538 547 16.6 The D'Alembert, or Inertia, Force 549 16.7 Summary 551 Problems 1

195 เลขหม่ 199 503 เลขทะเบียน 509 วันที่ / /

Chapter 17 Kinematics of Plane Motion of a Rigid Rody

	of a Rigid Body	562
17.1	Introduction	562
17.2	Rectilinear, and Plane Curvilinear, Translation of a	
	Rigid Body	563
17.3	Rotation of a Rigid Body about a Fixed Axis	565
17.4	Graphical Interpretation of Angular Displacement,	
	Velocity and Acceleration Diagrams	567
17.5	Rotation, with Constant Acceleration, of a Rigid	
	Body about a Fixed Axis	569
17.6	Relation between Translational and Rotational Motion	572
17.7	Relation between Translational and Rotational Motion	
	of Connected Bodies ,	574
17.8	General Plane Motion of a Rigid Body	576
17.9	Instant Center of Rotation	579
17.10	Pure Rolling of Rigid Bodies	582
17.11	Summary	584
	Problems	586

Chapter 18 Centroids, and Mass Moments of Inertia, of Rigid Bodies 597 18.1 Introduction 597 18.2 Centroids of Volumes 599 18.3 Center of Mass of a Rigid Body 603 18.4 Centroid of a Composite Homogeneous Rigid Body 605

18.5	Mass Moment of Inertia of a Homogeneous Rigid	
	Body	608
18.6	Parallel-Axis, or Transfer, Theorem for Mass	
	Moments of Inertia	611
18.7	Radius of Gyration	615
18.8	Mass Moments of Inertia of Homogeneous Thin	
	Plane Rigid Bodies	615
18.9	Relation between Moments of Inertia of a Plane	
	Area and Mass Moments of Inertia of a	
	Homogeneous Thin Plane Rigid Body	618
18.10	Mass Moments of Inertia of Composite	
	Homogeneous Rigid Bodies	621
18.11	Computation of Mass Moments of Inertia Using	
	the Transfer Theorem and a Single Integration	626
18.12	Center of Mass, and Mass Moment of Inertia, of	
	Plane Bodies Formed of Thin Rod Shapes	629
18.13	Summary	632
	Problems	640

Chapter 19 Dynamios of Rigid Bodies in Plane Motion 666

19.1	Introduction	655
19.2	Dynamic Motion of a Rigid Body about a Fixed Point	657

Contents	ix

19.3 Dynamic Motion Described by Translation of the		
	Center of Mass, and Rotation about This Point	661
19.4	Pure Rolling of a Cylindrical Body	670
19.5	Dynamic Motion of Connected Rigid Bodies	675
19.6	Solutions Using the D'Alembert, or Inertia, Forces	
	and Moments	678
19.7	Criteria for Sliding or Tipping	685
19.8	Center of Percussion	688
19.9	Summary	690
	Problems	691

Chapter **20** Work-Energy Methods for Particles and Rigid Bodies 708

20.1	Introduction	709
20.2	Work of a Force	710
20.3	Work of a Couple, Moment, or Torque	713
20.4	Energy Due to Position—Potential Energy of a	
	Particle	714
20.5	Energy Due to Motion-Kinetic Energy of a	
	Particle	717
20.6	Conservation of Energy-The Work-Energy Method	
	for a Particle	719
20.7	Potential Energy of a Rigid Body in Plane Motion	724
20.8	Kinetic Energy of a Rigid Body in Plane Motion	724
20.9	Conservation of Energy-The Work-Energy Method	
	for a Rigid Body in Plane Motion	726
20.10	The Work-Energy Method for Connected Bodies	729
20.11	The Work-Energy Method Used to Find the Value	
	of the Normal Acceleration of a Particle	731
20.12	Work or Energy per Unit Time-Power	735
20.13	Summary	741
	Problems	743

Chapter 21 Impulse-Momentum Methods for Particles and Rigid Bodies **758**

21.1	Introduction	758
21.2	Impulse of a Force and Linear Momentum of a	
	Particle	760
21.3	Impulse of a Constant Force	762
21.4	Impact	763
21.5	Conservation of Linear Momentum	765
21.6	Coefficient of Restitution	767
21.7	Direct and Oblique, Central Impact	774
21.8	Impulsive Forces	777
21.9	Angular Momentum of a Rigid Body in Plane	
	Motion	778
21.10	Impulse-Momentum Equation for Rigid Bodies in	
	Plane Motion	778

19.3	Dynamic Motion Described by Translation of the Center of Mass, and Rotation about This Point	661
19.4	Pure Rolling of a Cylindrical Body	670
19.5	Dynamic Motion of Connected Rigid Bodies	675
19.6	Solutions Using the D'Alembert, or Inertia, Forces	
	and Moments	678
19.7	Criteria for Sliding or Tipping	685
19.8	Center of Percussion	688
19.9	Summary	690
	Problems	691

Chapter **20** Work-Energy Methods for Particles and Rigid Bodies **709**

20.1	Introduction	709
20.2	Work of a Force	710
20.3	Work of a Couple, Moment, or Torque	713
20.4	Energy Due to Position—Potential Energy of a	
	Particle	714
20.5	Energy Due to Motion—Kinetic Energy of a	
	Particle	717
20.6	Conservation of Energy-The Work-Energy Method	
	for a Particle	719
20.7	Potential Energy of a Rigid Body in Plane Motion	724
20.8	Kinetic Energy of a Rigid Body in Plane Motion	724
20.9	Conservation of Energy-The Work-Energy Method	
	for a Rigid Body in Plane Motion	726
20.10	The Work-Energy Method for Connected Bodies	729
20.11	The Work-Energy Method Used to Find the Value	
	of the Normal Acceleration of a Particle	731
20.12	Work or Energy per Unit Time-Power	735
20.13	Summary	741
	Problems	743

Chapter 21 Impulse-Momentum Methods for Particles and Rigid Bodies 758

21.1	Introduction	758
21.2	Impulse of a Force and Linear Momentum of a	
	Particle	760
21.3	Impulse of a Constant Force	762
21.4	Impact	763
21.5	Conservation of Linear Momentum	765
21.6	Coefficient of Restitution	767
21.7	Direct and Oblique, Central Impact	774
21.8	Impulsive Forces	777
21.9	Angular Momentum of a Rigid Body in Plane	
	Motion	778
21.10	Impulse-Momentum Equation for Rigid Bodies in	
	Plane Motion	778

Contents	l	x
----------	---	---

21.11	Impact of Rigid	Bodies in Plane	Motion 7	80
21.12	Summary		7	88
	Problems		7	90

Chapter 22 Dynamics of Rigid Bodies				
	in Three Dimensional			
	Motion—Dynamic			
	Unbalance and Gyroscopic			
	Moments	804		
22.1	Introduction	804		
22.2	Review of the D'Alembert, or Inertia, Force	806		
22.3	Dynamic Forces Caused by Rotating Off-Center			
	Point Masses-Solution by Direct Use of Inertia			
	Forces	807		
22.4	Dynamic Forces Caused by Rotating OK-Center			
	Slender Bodies-Solution by Integration of the			
	Inertia Forces Acting on the Mass Elements	811		
22.5	Mass Product of Inertia of Thin Plane Bodies	815		
22.6	Dynamic Forces Caused by Rotating Unbalance—			
	General Solution for Unbalanced Bodies of			
	Arbitrary Shape	819		
22.7	Independence of Dynamic Forces and Angular			
	Acceleration of Rotating Unbalanced Bodies	828		
22.8	Dynamic Balancing of Rotors	829		
22.9	Critical Speed of a Shaft with an Unbalanced			
	Rotor	832		
22.10	Derivative of a Vector with Constant Magnitude			
	and Changing Direction	835		
22.11	Moment Effects Due to Change in Direction of an			
	Axis of Rotation—The Gyroscopic Moment	836		
22.12	Summary	839		
	Problems	840		
Chapter 23 Mechanical Vibration with				
	One Degree of Freedom	851		
23.1	Introduction	851		
23.2	Natural Frequency of Undamped Free Vibration	851		
23.3	Natural Frequency of Undamped Free Vibration of			
	a Rotational System with Small Angular			

23.3	Natural Frequency of Undamped Free Vibration of
	a Rotational System with Small Angular
	Displacements
23.4	Undamped Forced Vibration
23.5	Natural Frequency of Free Vibration with Viscous
	Damping
23.6	The Logarithmic Decrement
23.7	Forced Vibration with Viscous Damping
23.8	Summary

Problems

.

Cha	apter 24 Rectilinear Motion	ofa
	Body with Resistin	ng, or
	Drag, Forces	887
24.1	Introduction	887
24.2	Constant Drag Force	888

List of Symbols Index Answers to Odd-Numbered Problems		92 1
		914 917
	Problems	908
24.7	Summary	907
	with Sense Opposite that of Velocity	902
24.6	Quadratic Resistance Law—Applied Constant Force	
	with Same Sense as Velocity	898
24.5	Quadratic Resistance Law-Applied Constant Force	
	Quadratic Resistance Law	894
24.4	Drag Force Proportional to Velocity Squared-	
	Linear Resistance Law	889
24.3	Drag Force directly Proportional to velocity-	