CONTENTS

Introduction

KE	\mathbf{v}	 . 14.	1 14 1	 	レルハ	ь.
- I - I - I		 1,	1 1 1 1 1	 	11.11	7

A Critical Evaluation of Current Environment-Sensitive Fracture Test Methods					
Current Understanding of the Mechanisms of Stress Corrosion and Corrosion Fatigue					
Application of Laboratory Test Data to Engineering Design	52				
STRESS CORROSION CRACKING					
Static Tests					
Interlaboratory Evaluation of K_{Iscc} Measurement Procedures for Steels : A Summary	75				
Influence of Precracked Specimen Configuration and Starting Stress Intensity on the Stress					
Corrosion cracking of 4340 Steel	80				
Stress Corrosion Evaluation of Titanium Alloys Using Ductile Fracture Mechanics Technology	98				
Dicussion	113				
Loading Mode (Mode I/Mode III) Testing for Stress Corrosion Cracking	114				
Dicussion	127				
Studies of Stress Corrosion Crack Growth in Al-Zn-Mg Alloys by the Double Torsion Method	128				
A Fracture Mechanics Model for Iodine Stress Corrosion Crack Propagation in Zircaloy Tubing	150				
Utilizing Various Test Methods to Study the Stress Corrosion Behavior					
Of Al-Li-Cu Alloys	173				
Slow-Strain-Rate Stress Corrosion Testing of Aluminum Alloys	202				
Dicussion	240				
Slow-Strain-Rate Testing of Al 7075-T6 in Controlled Atmospheres	242				
Evaluating the Intergranular SCC Resistance of Sensitized Type 304 Stainless Steel in					
Low-Temperature Water Environments	256				

Effect of Material and Environmental Variables on SCC Initiation in		
Slow-Strain-Rate Tests on Type 304 Stainless Steel	271	
Discussion		287
Application of Slow-Strain-Rate Tests to Defining the Stress for Stress		
Corrosion Crack Initiation in 70/30 Brass		288
Evaluation of SCC Test Methods for Inconel 600 in Low		
Temperature Aqueous Solutions		310
Cyclic and Sequential Loading		
An Evaluation of Environment-Enhanced Fatigue Crack Growth Rate		
Test as an Accelerated Static Load Corrosion Test		325
Experimental Methods for the Evaluation of Environmentally Assisted		
Cracking of Steel in Caustic		341
Threshold-Stress Determination Using Tapered Specimens and Cyclic		
Stresses		368
Effect of Sequential Load or Potential Changes on Stress Corrosion		
Cracking Behavior of Steels		383
Use of a load-Pulsing Technique to Determine Stress Corrosion Crack		
Velocity	399	
CORROSION FATIGUE		
Development of a Navy Standard Test Method for Fatigue Crack Growth		
Rates in Marine Environments		415
Automated Corrosion Fatigue Crack Growth Testing in Pressurized		
Water Environments		426
Use of a Constant ΔK Test Method in the Investigation of Fatigue Crack		
Growth in 288° C Water Environments		443
Computer-Controlled Fatigue Crack Growth Rate Testing on Bend Bars		
In a Corrosive Environment		470
A Low-Cost Microcomputer Data Acquisition System for Fatigue Crack		
Growth Testing		484
Application of Ultrasonic Fatigue Testing Techniques to the Evaluation		
Of the Corrosion-Fatigue Strength of Materials		497
Effect of Water Vapor on Fatigue Crack Growth in 7475-T651 Aluminum		
Alloy Plate		513
Discussion		532
Corrosion Fatigue of 7000 Series Aluminum Alloys	534	
SUMMARY		
Summary		551
Index		555