•

CONTENTS

1/THEORIES OF STRESS AND STRAIN	1
1-1/Definition of Stress at a Point	6
1-2/Stress Notation	8
1-3/Symmetry of the Stress Array and Stress on an Arbitrarily Oriented Plane	11
1-4/Transformation of Stress. Principal Stresses. Other Properties	15
1-5/Differential Equations of Motion of a Deformable Body	33
1-6 / Deformation of a Deformable Body	38
1-7 / Strain Theory. Principal Strains	40
1-8/Strain of a Volume Element	48
1-9/Small-Displacement Theory	50
2/STRESS-STRAIN-TEMPERATURE RELATIONS	61
2-1/Elastic and Nonelastic Response of a Solid	62
2-2/First Law of Thermodynamics, Internal-Energy Density, Complementary Internal-Energy Density	66
2-3 / Hooke's Law. Anisotropic Elasticity	73
2-4 / Hooke's Law. Isotropic Elasticity	74
2-5 / Equations of Thermoelasticity for Isotropic Materials	81
2-6 / Initiation of Yield. Yield Criteria	82
3/FAILURE CRITERIA	101
3-1/Modes of Failure	103
1/FAILURE BY ELASTIC DEFLECTION	105
2/FAILURE BY EXTENSIVE YIELDING	106
3/FAILURE BY FRACTURE	109

3-2 / Failure Criteria. Excessive Deflections	110
3-3/Failure Criteria. Yield Initiation. Extensive Yield	113
3-4/Failure Criteria. Fracture	132
3-5 / Progressive Fracture (High Cycle Fatigue for Number of Cycles $N > 10^6$)	144
4/APPLICATION OF ENERGY METHODS: ELASTIC DEFLECTIONS AND STATICALLY INDETERMINATE MEMBERS AND STRUCTURES	155
4-1 / Principle of Stationary Potential Energy	156
4-2 / Castigliano's Theorem on Deflections	163
4-3 / Castigliano's Theorem on Deflections for Linear Load-Deflection Relations	168
4-4 / Deflections of Statically Determinate Structures	175
4-5 / Statically Indeterminate Structures	190
5/TORSION	209
5-1/Torsion of a Cylindrical Bar of Circular Cross Section	210
5-2/Saint-Venant's Semi-Inverse Method	214
5-3 / Linear Elastic Solution	221
5-4 / The Prandtl Elastic-Membrane (Soap-Film) Analogy	226
5-5 / Narrow Rectangular Cross Section	230
5-6 / Hollow Thin-Wall Torsion Members. Multiply Connected Cross Section	233
5-7/Thin-Wall Torsion Members with Restrained Ends	242
5-8 / Fully-Plastic Torsion	252
6/UNSYMMETRICAL BENDING OF STRAIGHT BEAMS	259
6-1 / Definition of Shear Center in Bending. Symmetrical and Unsymmetrical Bending	259
6-2 / Bending Stresses in Beams Subjected to Unsymmetrical Bending	267
6-3 / Deflections of Straight Beams Subjected to Unsymmetrical Bending	281

1			
200			
aus			

7-2/Shear Flow in Thin-Wall Beam Cross Sections	296
7-3/Shear Center for a Channel Section	299
7-4/Shear Center of Composite Beams Formed From Stringers and Thin Webs	308
7-5/Shear Center of Box Beams	315
7-6 / Straight Shafts Subjected to Combined Loads	321

6-4 / Change in Direction of Neutral Axis and Increase in Stress and Deflection in Rolled Sections Due to a Very Small Inclination of Plane of Loads to a Principal Plane

7-1/Approximations Employed for Shear in Thin-Wall Beam

6-5 / Fully Plastic Load for Unsymmetrical Bending

7/SHEAR CENTER FOR THIN-WALL BEAM CROSS SECTIONS

Cross Sections

8/CURVED BEAMS

8-1 / Introduction	327
8-2/Circumferential Stress in a Curved Beam	328
8-3/Radial Stresses in Curved Beams	341
8-4 / Correction of Circumferential Stresses in Curved Beams Having I, T, or Similar Cross Sections	345
8-5 / Deflections of Curved Beams	354
8-6 / Statically Indeterminate Curved Beams. Closed Ring Subjected to a Concentrated Load	360
8-7/Fully Plastic Loads for Curved Beams	363
9/BEAMS ON ELASTIC FOUNDATIONS	369
9-1/General Theory	370
9-2/Infinite Beam Subjected to Concentrated Load: Boundary Conditions	372
9-3/Infinite Beam Subjected to a Distributed Load Segment	386

94/ Semi-Infinite Beam Subjected to Loads at Its End 391

CONTENTS/ xv

293

293

327

286

288

	405
9-7 / Thin-Wall Circular Cylinders	396
9-6/Short Beams	394
9-5 / Semi-Infinite Beam with Concentrated Load Near Its End	392

10/FLAT PLATES	405
A/ BASIC EQUATIONS AND SIMPLE SOLUTIONS	405
10-1 / Introduction	405
10-2/Stress Resultants in a Flat Plate	407
10-3 / Kinematics: Strain-Displacement Relations for Plates	411
10-4 / Equilibrium Equations for Small-Displacement Theory of Flat Plates	416
10-5 / Stress-Strain-Temperature Relations for Isotropic Elastic Plates	419
10-6 / Strain Energy of a Plate	424
10-7/Boundary Conditions for Plates	425
10-8/Solution of Plate Problems	429
10-9/Failure Loads for Circular and Rectangular Plates	435
B/SUMMARY OF CERTAIN PLATE SOLUTIONS	441
10-10/Small Elastic Deflections of Circular Plates. Theory and Experiment	441
10-11/Large Elastic Deflections of Circular Plates. Clamped Edge	447
10-12 / Large Elastic Deflections of Circular Plates. Simply Supported Edge	453
10-13/Small Elastic Deflections of Rectangular Plates. Uniform Load	455
10-14/ Stress in Rectangular Plate Supported on Two Opposite Edges by Beams	462
11/THE THICK-WALL CYLINDER	471
11-1 / Basic Relations	471
11-2/Stress Components for a Cylinder with Closed Ends	475

11-3/Stress Components and Radial Displacement for
Constant Temperature47911-4/Criteria of Failure483

CONTENTS	5/ xvil
----------	---------

11-5/Fully Plastic Pressure Autofrettage	492
11-6/Cylinder Solution for Temperature Change Only	498
11-6/Cylinder Solution for reinperature change only	-10
12/STRESS CONCENTRATIONS. BASIC CONCEPTS	503
12-1/Nature of Stress. A Concentration Problem	
Stress Concentration Factor	506
12-2/Stress Concentration Factors. Theory of Elasticity	511
12-3/Stress Concentration Factors. Experimental Techniques	522
12-4/Stress Gradiants Due to Concentrated Load	530
12-5/The Stationary Crack	532
12-6/Crack Propagation. Stress Intensity Factor	537
13/EFFECTIVE STRESS CONCENTRATION FACTORS.	
APPLICATIONS	549
13-1/Stress Concentration Factors—Combined Loads	549
13-2/Effective Stress Concentration Factors	559
13-3/Effective Stress Concentration Factors. Repeated Loads	567
13-4/Effective Stress Concentration Factors. Other Influences	569
13-5/Effective Stress Concentration Factors. Inelastic Strains	575
14/CONTACT STRESSES	581
14-1 / Introduction	581
14-2/The Problem of Determining Contact Stresses	582
14-3/Assumptions on Which a Solution for Contact Stresses is Based	585
14-4/Notation and Meaning of Terms	591
14-5/Expressions for Principal Stresses	592
14-6 / Method of Computing Contact Stresses	594
14-7/Deflection of Bodies in Point Contact	604
14-8 / Stress for Two Bodies in Contact over Narrow Rectangular Area (Line Contact). Loads Normal to Contact Area	613
14-9/Stress for Two Bodies in Line Contact. Loads Normal and Tangent to Contact Area	616

.

15/STRUCTURAL INSTABILITY. BUCKLING	629
A/COLUMNS	629
15-1/Elastic Buckling of Ideal Slender Column	630
15-2 / Imperfect Slender Column	636
15-3 / Inelastic Buckling	638
15-4/Two Formulas for Inelastic Buckling of an Ideal Column	639
15-5/Tangent-Modulus Formula for an Inelastic Buckling Load Load at which Inelastic Bending of Ideal Column Begins	641
15-6 / Double-Modulus Formula	645
15-7/Comparison of the Two Formulas for the Inelastic Buckling Load	649
B/CYLINDRICAL TUBES, RINGS, AND FLAT PLATES	653
15-8/The Problem Defined	653
15-9/Critical Load for Elastic Buckling of Rings The Slender Thin-Wall Circular Tube.	655
15-10/Empirical Formulas	662
15-11/ Effect of End Restraints on Elastic Buckling of Tube	662
15-12 / Inelastic Buckling of Tube	666
15-13/Post-BucklingStrength of Flat Plates	668
APPENDIX/SECOND MOMENT (MOMENT OF INERTIA) OF A PLANE AREA	675
A-1 / Moments of Inertia of a Plane Area	675
A-2/Parallel Axis Theorem	676
A-3/Transformation Equations for Moments and Products of Inertia	680

INDEX

685