620.112 MUL

Contents

I. CRYSTALLOGRAPH	IY AND	DIFFRACTION
BY CRYSTALS: B. I	RALPH	

Basic crystallography	1
Lattices and structures	1
Indexing lattice planes in three dimensions	4 6
Indexing directions Notation	6
Zone law	6
Methods of projection	7
Diffraction	10
Electron diffraction	13
The reciprocal lattice	15
Reflecting (Ewald) sphere construction	16
Further reading	17
2. X-RAY DIFFRACTION: T. W. BAKER	18
The basis of the information revealed by X-ray diffraction	18
The fundamental measurement in X-ray diffraction	19
The radiation	20
Inherent difficulties of X-ray diffraction techniques	20
The three main classifications of technique	21
The Laue method	21
The rotating crystal method	21
The powder method	21
The main applications of X-ray diffraction	22
Examination of polycrystalline materials	22
Studies on single crystals	30
Further reading	32
3. NEUTRON DIFFRACTION: G. E. BACON	33
Principles	34
Nuclear scattering	34
Magnetic scattering	35
Inelastic scattering Technique and apparatus	37 38
Applications	
Visibility of light atoms	39
Distinction between near neighbours	39 40
High penetrability	41
Magnetic studies	42
Future prospects	43
Further reading	43

4.	ELECTRON DIFFRACTION: J. A. BELK	44
	Principles	44
	Angles and dimensions	45
	Shape of reciprocal lattice points	46
	Kikuchi lines Lensless diffraction	46
	Selected-area diffraction	47
		49
	Scanning electron diffraction	52
	Small-angle scattering	52
	Conclusion	54
	Further reading	55
	References	55
5.	FIELD-ION MICROSCOPY: B. RALPH	56
	Principles of operation	56
	Field ionization	58
	Field evaporation	59
	Advantages and limitations of the field-ion microscope	61
	Applications	63
	Surface applications Pulk application	63 65
	Bulk application Lattice defects	65
	Alloy investigations	66
	The atom-probe field-ion microscope	68
	Conclusions	69
	Further reading	70
	References	70
6.	QUANTITATIVE OPTICAL MICROSCOPY	
	AND INTERFEROMETRY: H. MYKURA	71
	Principles	71
	Two-dimensional quantitative measurements	73
	Three-dimensional measurements with the optical microscope	74
	Interference microscopy	74
	Automated measuring systems	76
	Further reading	78
7.	. PRINCIPLES OFELECTRON MICROSCOPY: T. MULVEY	79
	Construction	81
	Operation	84
	Adjustment of the image-forming system	85
	Diffraction patterns in the electron microscope	86
	Selected-area diffraction patterns	87
	Contrast apertures	87
	Dark-field microscopy	88
	Phase contrast	89

COIVTEIVTS

	Image-processing	90
	Scanning transmission electron microscopy	91
	Selected-area diffraction patterns in STEM	91
	Spectrochemical analysis in the TEM	92
	Further reading	93
	References	93
8.	SPECIMEN PREPARATION TECHNIQUES FOR TRANSMISSION ELECTRON MICROSCOPY: s. R. KEOWN	94
	Replica techniques	96
	Plastic-surface replicas	96
	Carbon-surface replicas	97
	Two-stage plastic-carbon-surface replicas	99
	Extraction replicas Shadowing	100
	Microfractography	104
	Foil techniques	105
	Classification of specimen-preparation techniques	107
	Electropolishing techniques for strip foils	110
	Electropolishing techniques for disc foils	111
	Conclusions	114
	References	114
	Appendix	115
9.	HIGH-VOLTAGE ELECTRON MICROSCOPY: B. HUDSON	116
	Construction	116
	The accelerator and H. T. set	116
	The column	117
	Penetration	118
	Loss of intensity	118
	Loss of resolution	119
	Changes in the electron-optic parameters with voltage	120
	Reduced spherical aberration Selected-area diffraction	121
	Dark-field microscopy	122
	Electron momentum	122
	Fluorescent screens and photographic emulsions	122
	Other specimen-beam interactions	122
	Inelastic scattering: Kikuchi line patterns	123
	Ionization losses	123
	Displacement damage Other applications of the HVEM	124
	The study of high atomic number materials	125
	The study of high atomic number materials The study of non-metalic materials	126
	Biological applications	127
	Environmental cells	127
	Summary of HVEM characteristics	127
	Further reading	127
	References	128
		vii

io, QUANTITATIVE ELECTRON MICROSCOPY:	
K. F. HALE	129
Simple quantitative microscopy	131
Density of precipitates or inclusions	131
Volume fraction	131 131
Average distance between precipitates in three dimensions Grain size	131
Dislocation density	132
Method of determining specimen thickness Precise determination of specimen orientations	133 134
Computed electron micrographs and their use in microstructure	134
identification	136
Determination of strain fields around precipitates Determination of stacking-fault energies	138 143
Quantitative in situ electron microscopy	145
Further reading	146
References	146
II. SCANNING ELECTRON MICROSCOPY: G. R. BOOKER	148
Principle of the instrument	148
Electron probe parameters	149
Scanning parameters	150
Magnification Depth of focus	150 150
Examination modes	151
Signal collectors	152
Signal/noise ratio Resolution	153 154
Image contrast	155
Electron channelling patterns	157
Dynamic experiments	159
Signal processing	160
Practical considerations	160
Optimum electron probe conditions	161
Applications	162
Crystal growth	162
Fracture surfaces	162
Solidification structures p-n junctions	163 165
Magnetic domains	165
Deformation structures	167
Crystallographic orientation	168
Dislocation images in transmission Electrical behaviour of defects	169
Further reading	171
12. ELECTRON-PROBE MICROANALYSIS: D. M. POOLE	·
Principles	172 174
Instrumental	174
Spectrometers	176
Recording	176
Quantitative analysis	177

	Instrumentation	181
	Applications	181
	Further Reading	185
	References	186
13.	AUGER SPECTROSCOPY: J. C. RIVIÈRE	187
	Principles of the technique	188
	Instrumentation	192
	Applications	196
	Metallurgical applications	196
	Surface reactions Studies of surface oxidation by chemical shifts	199
	Surface interaction effects of the incident electron beam	201
	Conclusions	204
	Further reading	204
	References	204
		-
14.	X-RAY SPECTROMETRY: J. D. WILSON	206
	Principles	206
	X-ray emission	206
	X-ray absorption and fluorescence	208
	Instrumentation	211
	The excitation source Monochromators	212
	Photon counters	214
	Applications	215
	Precision	215
	Sensitivity ·	215
	Accuracy	216
	Conclusions	219
	Further reading	220
	References	220
	.mo.///	
15.	ATOMIC ABSORPTION SPECTROSCOPY: w. R. NALL	221
	Theory	221
	Instrumentation	224
	Light source Atomizers	224 224
	Monochromators	226
	Photodetectors	227
	Amplifiers and recorders	227
	Applications	227
	Conclusions	230
	Further reading	231
	References	231
		ix

16. OPTICAL EMISSION SPECTROSCOPY: A. L. GRAY	232
Principles	232
Spectral emission Excitation Dispersion Detection	233 234 235 237
Instrumentation practice	237
Sample introduction and excitation Dispersing systems Detector and read-out systems	237 240 241
Applications	242
Geological materials Analysis of used lubricating oil Analysis of pig iron	242 243 244
Conclusions	244
Further reading	246
References	246
17. MASS SPECTROMETRY: R. K. WEBSTER	247
Isotopic dilution analysis	248
Principles of instrumentation and technique Performance of isotopic dilution Applications	249 251 253
Spark-source mass spectrometry Principles of instrumentation Performance of spark-source mass spectrometry Applications	254 254 259 261
New instrumental techniques	263
Conclusions	263
Further reading	264
References	264
18. ACTIVATION ANALYSIS: T. B. PIERCE	265
General principles Decay schemes Energy balance Yield of a nuclear reaction Nuclear interferences	265 265 267 268 268
Techniques of activation analysis	269
Neutron activation analysis	271
Reactor neutron activation analysis with chemical separation Reactor activation analysis with instrumental measurement Activation analysis with accelerator neutron sources Activation analysis with isotopic neutron sources Prompt-radiation techniques based on neutron irradiation	271 273 273 274 275
y-photon activation analysis	276
Charged-particle activation analysis	277
Charged-particle techniques based on the measurement of delayed radiation Charged-particle methods based on prompt-radiation techniques	277 278

Conclusions	280
Further reading	280
19. MOSSBAUER SPECTROSCOPY: B. W. DALE	28 r
The Mossbauer spectrometer	283
General applications of Mossbauer spectroscopy	285
The nuclear volume effect Nuclear quadrupole effects The nuclear Zeeman effect	285 286 288
Specific applications	289
Conclusions	290
Further reading	290
20. MAGNETIC RESONANCE SPECTROSCOPY J. A. S. SMITH Principles and methods	: 291 291
Applications	300
Conclusions	313
Further reading	314
INDEX	315