POSTBUCKLING AND COLLAPSE OF A STIFFENED	
PANEL IN COMPOSITE	13
THE SENSITIVITY OF MATERIAL DAMPING TO	
DAMAGE IN FIBRE REINFORCED PLASTICS	21
NON-LINEAR ANALYSIS OF THICK COMPOSITE SHELL	
USING A CONSISTENT MODERATE ROTATION THEORY	33
AN ANALYSIS OF THE STRESS DISTRIBUTION IN PROXIMITY OF	
A BLIND HOLE IN COMPOSITE LAMINATES	45
INFLUENCE OF STRUCTURAL PARAMETERS ON THE FATIGUE	
BEHAVIOUR OF CERAMIC MATRIX COMPOSITES : A NEW	
TEST METHOD	59
METHOD OF VIBRATION ANALYSIS OF IRREGULARLY SHAPED	
LAMINATED COMPOSITE PLATES UNDER AXIAL LOADINGS	69
ON THE STABILITY BEHAVIOUR OF LAMINATED COMPOSITE	07
CURVED BEAMS : A NUMERICAL INVESTIGATION	81
BUCKLING AND POST-BUCKLING ANALYSIS OF LAMINATED	01
COMPOSITE CURVED BEAMS	93
HIERARCHY OF THE IMPROVED LONG-WAVE THEORIES	20
FOR THIN LAMINATES	107
DESIGN OF SANDWICH STRUCTURES WITH DAMPING	117
EXPERIMENT AND NUMERICAL ANALYSIS OF DYNAMIC	,
CHARACTERISTICS OF THICK COMPOSITE BEAMS	131
EFFECT OF STRAIN RATE ON THE MODE INTERLAMINAR	101
FRACTURE TOUGHNESS OF SANDWICH DOUBLE	
CANTILEVER BEAMS	143
DEPENDENCE OF THE RESIDUAL COMPRESSIVE STRENGTH OF	1.0
BALLISTICALLLY IMPACTED CFR LAMINATES ON	
THEIR THICKNESS	159
THE SIMULATION OF ULTIMATE LOADS OF INITIAL	107
FRACTURE FOR THE SPATIALLY REINFORCED COMPOSITES	171
ON THE DEVELOPMENT AND USE OF HIGHER ORDER MODESL FOR	
THE ANALYSIS OF COMPOSITE LAMINATES	183
COHESION LAWS IN TENSILE FRACTURE OF COMPOSITES	105
LAMINATES WITH CRACKS	203
BUCKLING BEHAVIOUR OF GEOMETRICALLY IMPERFECT	205
COMPOSITES CYLINDRICAL SHELL UNDER AXIAL	
COMPRESSION	213
USE OF MODAL ANALYSIS IN THE STRUCTURAL OPTIMIZATION	210
OF A CAR BODY COMPONENT MADE IN THERMOPLASTIC	
COMPOSITE MATERIAL	227
NEW TEST METHOD FRO MEASURING STATIC AND DYNAMIC	
ENERGY ABSORPTION CAPACITY OF COMPOSITE PLATES	239
ANALYSIS AND DESIGN OF FRP-SANDWICH PLATES-AGAINST	
INDENTATION	251
DESIGN OF A COMPOSITE COMPRESSOR BLADE	265
THE RELIABILITY OF SMALL-DIAMETER PULTRUDED GRP	200
ROD IN OPTICAL FIBRE CABLES	277
GEOMETRY AND ELASTICITY OF 3-D COMPOSITES	289
APPLICATIONS OF COMPOSITES IN CIVIL ENGINEERING	301
ON THE USE OF A STRAIN GAGE FOR THE MODAL ANALYSIS	501
OF COMPOSITE STRUCTURES	313
	515

321
331
341
351
361
373
385

CHAPTER ONE. INTRODUCTION	1
1.1 What Is Concrete?	1
1.2 Ingredients of Concrete and Their Roles1.3 Cements, Water, and Admixtures	3 4
1.4 Aggregates	47
1.5 Variability of Concrete Properties	15
1.6 Characteristics of the Variability	13
References	24
CHAPTER TWO. RHEOLOGY OF THE FRISHLY MIXED CEMENT PASTE	27
2.1 Fresh Cement Paste	27
2.2 Rheological Properties of the Fresh Paste	30
2.3 Effect of Water Content on Rheological Properties of Paste	34
2.4 Approximation by Power Function	36
2.5 Other Factors Influencing Rheological Properties	45
References	47
CHAPTER THREE. CONSISTENCEY WORKABILITY AND RHEOLOGY	
OF FRESH CONCRETE	51
3.1 Freshly Mixed Concrete	51
3.2 Workability and Other Related Terms	53
3.3 Slump and Flow Tests	57
3.4 Remolding and Penetration Tests	63
3.5 Test of Compactability and Other Methods	68
3.6 Rheological Measurements of Fresh Concrete	72
3.7 Tests with Mixers	79
3.8 Evaluation and Selection of Methods for Measuring Consistency	81
References	85
CHAPTER FOUR. FACTORS AFFECTING CONCRETE CONSISTENCE	92
4.1 Effect of Water Content on Consistency—Approximation by	
Power Function	92
4.2 Justification of the <i>K</i> Procedure	99
4.3 Effect of Water Content on the Consistency—Other	
Approximations	104
4.4 Other Factors Influencing the Consistency	109
4.5 Calculation of the Water Requirement of Mortar and Concrete	114
4.6 Relationships Between Various Consistency Measurements	125
4.7 Poor Workability and Its Correction	131
4.8 Symbols For Tables 4.4 through 4.7	140
References	141
CHAPTER FIVE. AIR CONTENT—SEGREGATION AND BLEEDING	146
5.1 Air in Fresh Concrete	146
5.2 Methods for Measuring Air Content in Fresh Concrete	152
5.3 Air-Entrained Concrete	160
5.4 Segregation	163
5.5 Bleeding	169
References	178

CHAPTER SIX. COMPOSITION OF CONCRETE. UNIT WEIGHT.	
OTHER PROPERTIES	183
6.1 Characterization of Concrete Composition	183
6.2 Formulas for the Relationship Between Mix Proportion and	
Cement Content	188
6.3 Testing the Composition of Fresh Concrete by Non-Nuclear Means	198
6.4 Testing the Composition of Fresh Concrete by Nuclear Means	204
6.5 Unit Weight of Fresh Concrete	212
6.6 Lateral Pressure of Fresh Concrete	212
6.7 Temperature of Fresh Concrete	218
References	220
Kererences	229
CHAPTER SEVEN. PROPORTIONING OF CONCRETE	235
7.1 Selection of Concrete Ingredients	235
7.2 Basics of Concrete Proportioning	233
7.3 Proportioning for Simple Cases	240
	248 253
7.4 Proportioning for Compressive Strength Along with Consistency7.5 Required Strength of Batch for a Specified Concrete	235
Strength in Structure	264
7.6 Trial Mix Adjustments	204
7.7 Proportioning for Durability	283
7.8 Proportioning of Structural Lightweight Concretes	289
7.9 Proportioning with Flyash	296
7.10 Proportioning for Mass Concrete	300
7.11 Proportioning for Other Cases	302
7.12 Optimization of Concrete Composition	308
7.12 Discussion Topics	315
References	321
	226
CHAPTER EIGHT. PRODUCTION OF CONCRETE	326
8.1 General	326
8.2 Batching	328
8.3 Mixing	333
8.4 Transportation of Concrete	338
8.5 Ready-Mixed Concrete	340
8.6 Concrete for Extreme Weather	346
8.7 Maximization of Profit of Concrete Production	352
References	362
CHAPTER NINE. PUMPING, PLACEMENT, AND VIBRATION OF	
FRESH CONCRETE	365
9.1 Pumping of Concrete	365
9.2 Other Methods for Placement of Concrete	376
9.3 Principles of Consolidation by Vibration	386
9.4 Behavior of Fresh Concrete Under Vibration	389
9.5 Research Results	394
9.6 Vibrators	401
9.7 Execution of Vibration	408
9.8 Special Cases of Vibration	415
References	419
CHAPTER TEN. SETTING. SAMPLING	427
10.1 Setting and Stiffening of Portland Cement Pastes	427
10.2 Setting of Concrete	433
10.3 Factors That Affect Setting	437
10.4 Formulas for setting	450
10.5 Sampling of Fresh Concrete	457
References	459

CONCRETE POLYMER MATERIALS AND ITS WORKDWIDE	
DEVELOPMENT	1
PROCESS TECHNIQUES FOR PRODUCING POLYMER –	
IMPREGNATED CONCRETE	15
DEVELOPMENT OF POLYMER – IMPREGNATED CONCRETE AS A	
CONSTRUCTION MATERIAL FOR ENGINEERING PROJECTS	33
PROPERTIES AND APPLICATIONS OF POLYMER IMPREGNATED	
CEMENTITIOUS MATERIALS	57
POLYMER – IMPREGNATED CONCRETE SURFACE TREATMENTS	
FOR HIGHWAY BRIDGE BEDKS	93
POLYMER IMPREGNATED COMCRETE SPHERICAL HULLS FOR	
SEAFLOOR STRUCTURES	119
A STUDY OF PARTIALLY IMPREGNATED POLYMERIZED	
CONCRETE SPECIMENS	149
PERLITE POLYMER CONCRETE	173
THE INFLUENCE OF POROSITY AND PARTIAL DRYING ON	
PROPERTIES OF POLYMER IMPREGNATED MORTAR	191
RADIOGRAPHIC STUDIES OF THE STRUCTURES OF POLYMER	
IMPREGNATED CONCRETE	205
POLYMER IMPREGNATED CONCRETE AS A COMPOSITE	
MATERIAL	223
ANALYSIS OF BRIDGE DECKS USING POLYMER IMPREGNATED	
CONCRETE	247
MIX PROPORTIONS AND PROPERTIES OF POLYESTER RESIN	
CONCRETES	283
POLYMER CONCRETE – REINFORCED CONCRETE COMPOSITE	
BEAMS	295
IMPROVEMENT OF MECHANICAL PROPERTIES OF CONCRETE	
THROUGH THE ADDITION OF POLYMER LATEX	319
EPOXY POLYMER MODIFIED CONCRETES	339
STRESS – STRAIN PROPERTIES OF POLYMER MODIFIED	
CONCRETES	347
SI TABLES	359

620.136 PER

CONTENTS

1	Contributions of Thorbergur Thorvaldson to Cement and Concrete Research	3
2	The Chemistry of Sulphate-resisting Portland Cements	18
3	Some Studies on the Performance of Concrete Structures in Sulphate-bearing	
	Environments	56
4	Field and Laboratory Studies of the Sulphate Resistance of Concrete	66
5	Combating Sulphate Attack on Concrete on Bureau of Reclamation Projects	77
6	Experience with Concrete in Sulphate Environments in Western Canada	93
7	Field and Laboratory Studies of the Sulphate Resistance of Concrete	113
8	Experience in the Winnipeg Area with Sulphate-resisting Cement Concrete	125
9	The Performance of Ordinary Portland Cement Concrete in Prairie Soils of	
	High Sulphate Content	135
10	Performance of Concrete in Sea-Water : Some Examples for Halifax	159
11	CaseHistories of Poor Concrete Durability in Ontario Highway Structures	181
12	Observations of Sidewalk Concrete during Fifteen Years' Exposure	205
13	Scaling of Concrete by Frost Action	230

POSTBUCKLING AND COLLAPSE OF A STIFFENED	
PANEL IN COMPOSITE	13
THE SENSITIVITY OF MATERIAL DAMPING TO	
DAMAGE IN FIBRE REINFORCED PLASTICS	21
NON-LINEAR ANALYSIS OF THICK COMPOSITE SHELL	
USING A CONSISTENT MODERATE ROTATION THEORY	33
AN ANALYSIS OF THE STRESS DISTRIBUTION IN PROXIMITY OF	
A BLIND HOLE IN COMPOSITE LAMINATES	45
INFLUENCE OF STRUCTURAL PARAMETERS ON THE FATIGUE	
BEHAVIOUR OF CERAMIC MATRIX COMPOSITES : A NEW	
TEST METHOD	59
METHOD OF VIBRATION ANALYSIS OF IRREGULARLY SHAPED	
LAMINATED COMPOSITE PLATES UNDER AXIAL LOADINGS	69
ON THE STABILITY BEHAVIOUR OF LAMINATED COMPOSITE	07
CURVED BEAMS : A NUMERICAL INVESTIGATION	81
BUCKLING AND POST-BUCKLING ANALYSIS OF LAMINATED	01
COMPOSITE CURVED BEAMS	93
HIERARCHY OF THE IMPROVED LONG-WAVE THEORIES	20
FOR THIN LAMINATES	107
DESIGN OF SANDWICH STRUCTURES WITH DAMPING	117
EXPERIMENT AND NUMERICAL ANALYSIS OF DYNAMIC	
CHARACTERISTICS OF THICK COMPOSITE BEAMS	131
EFFECT OF STRAIN RATE ON THE MODE INTERLAMINAR	101
FRACTURE TOUGHNESS OF SANDWICH DOUBLE	
CANTILEVER BEAMS	143
DEPENDENCE OF THE RESIDUAL COMPRESSIVE STRENGTH OF	1.0
BALLISTICALLLY IMPACTED CFR LAMINATES ON	
THEIR THICKNESS	159
THE SIMULATION OF ULTIMATE LOADS OF INITIAL	107
FRACTURE FOR THE SPATIALLY REINFORCED COMPOSITES	171
ON THE DEVELOPMENT AND USE OF HIGHER ORDER MODESL FOR	
THE ANALYSIS OF COMPOSITE LAMINATES	183
COHESION LAWS IN TENSILE FRACTURE OF COMPOSITES	105
LAMINATES WITH CRACKS	203
BUCKLING BEHAVIOUR OF GEOMETRICALLY IMPERFECT	205
COMPOSITES CYLINDRICAL SHELL UNDER AXIAL	
COMPRESSION	213
USE OF MODAL ANALYSIS IN THE STRUCTURAL OPTIMIZATION	210
OF A CAR BODY COMPONENT MADE IN THERMOPLASTIC	
COMPOSITE MATERIAL	227
NEW TEST METHOD FRO MEASURING STATIC AND DYNAMIC	
ENERGY ABSORPTION CAPACITY OF COMPOSITE PLATES	239
ANALYSIS AND DESIGN OF FRP-SANDWICH PLATES-AGAINST	
INDENTATION	251
DESIGN OF A COMPOSITE COMPRESSOR BLADE	265
THE RELIABILITY OF SMALL-DIAMETER PULTRUDED GRP	200
ROD IN OPTICAL FIBRE CABLES	277
GEOMETRY AND ELASTICITY OF 3-D COMPOSITES	289
APPLICATIONS OF COMPOSITES IN CIVIL ENGINEERING	301
ON THE USE OF A STRAIN GAGE FOR THE MODAL ANALYSIS	501
OF COMPOSITE STRUCTURES	313
	515

321
331
341
351
361
373
385