CONTENTS PREFACE xiii ACKNOWLEDGMENTS xvii ## INTRODUCTION TO MATERIALS SCIENCE AND ENGINEERING - 1.1. Materials Resources and Their Implications 1 - 1.2. Materials and Engineering 10 - 1.3. Engineering Materials and Selected Applications 15 - 1.4. Conclusion 24 Additional Reading 25 Questions and Problems 26 ### **ELECTRONS IN ATOMS AND SOLIDS: BONDING** - 2.1. Introduction 29 - 2.2. Atomic Electrons in Single Atoms 31 CONTENTS | 7 | |---| | | | | | | | | CONTENTS | 5.4. Introduction to Binary Phase Diagrams 206 5.5. Additional Phase Diagrams 215 5.6. Structure and Composition of Phases 228 5.7. Thermodynamics of Surfaces and Interfaces 237 5.8. Thermodynamics of Point Defects 240 5.9. Perspective and Conclusion 242 | |--| | KINETICS OF MASS TRANSPORT AND PHASE TRANSFORMATIONS | | 6.1. Introduction 249 6.2. Macroscopic Diffusion Phenomena 250 6.3. Atom Movements and Diffusion 259 6.4. Nucleation 267 6.5. Kinetics of Phase Transformations 274 6.6. Generalized Solid-State Kinetics 283 6.7. Perspective and Conclusion 291 Additional Reading 293 Questions and Problems 293 | | MECHANICAL BEHAVIOR OF SOLIDS | | 7.1. Introduction 299 7.2. Elastic Behavior 300 7.3. Plastic Deformation of Metals 307 7.4. Role of Dislocations 322 7.5. Mechanical Behavior of Polymers 334 7.6. Mechanical Behavior of Ceramics and Glasses 341 7.7. Mechanical Testing of Materials 348 7.8. Perspective and Conclusion 363 Additional Reading 365 Questions and Problems 365 | | MATERIALS PROCESSING AND FORMING OPERATIONS | | 8.1. Introduction 3718.2. Solidification Processing of Metals 372 | | 8.3. Mechanical Forming Operations 382 8.4. Powder Metallurgy 402 8.5. Polymer Processing 408 8.6. Forming Glass 413 8.7. Processing of Ceramics 418 8.8. Perspective and Conclusion 423 | |---| | HOW ENGINEERING MATERIALS ARE STRENGTHENED AND TOUGHENED | | 9.1. Introduction 431 9.2. Heat Treatment of Steel 433 9.3. Ferrous and Nonferrous Alloys: Properties and Applications 450 9.4. Mechanical Working and Recrystallization 453 9.5. Strengthening Nonferrous Metals 463 9.6. Modeling Composite Properties 471 9.7. Engineering Composites 478 9.8. Ceramics and How to Strengthen and Toughen Them 487 9.9. Perspective and Conclusion 492 Additional Reading 495 Questions and Problems 495 | | DEGRADATION AND FAILURE OF STRUCTURAL MATERIALS | | 10.1. Introduction 501 | | 10.2. Corrosion 502
10.3. Gaseous Oxidation 524 | | 10.4. Wear 528 | | 10.5. Fracture of Engineering Materials 534 | | 10.6. Elevated Temperature Creep Degradation and Failure 544 | | 10.7. Fatigue 546
10.8. Fracture Case History 550 | | 10.9. Perspective and Conclusion 553 | | Additional Reading 554 | | Questions and Problems 554 | ## ELECTRICAL PROPERTIES OF METALS, INSULATORS, AND DIELECTRICS - 11.1. Introduction to Electrical Conduction in Solids 559 - 11.2. Electrons in Metals 562 - 11.3. Electron Scattering and Resistivity of Metals 572 - 11.4. Thermal Conductivity of Materials 579 - 11.5. Superconductivity 581 - 11.6. Conduction Behavior in Insulating Solids 586 - 11.7. Dielectric Phenomena 591 - 11.8. Dielectric Materials and Applications 598 - 11.9. Perspective and Conclusion 605 Additional Reading 606 Questions and Problems 607 12 # SEMICONDUCTOR MATERIALS AND DEVICES: SCIENCE AND TECHNOLOGY - 12.1. Introduction 611 - 12.2. Carriers and Conduction in Homogenous Semiconductors 613 - 12.3. Phenomena at Semiconductor Junctions 626 - 12.4. Diodes and Transistors 634 - 12.5. Materials Issues in Processing Semiconductor Devices 641 - 12.6. Fabrication of Integrated Circuit Transistors 656 - 12.7. Perspective and Conclusion 660 Additional Reading 661 Questions and Problems 661 13 ### **OPTICAL PROPERTIES OF MATERIALS** - 13.1. Introduction 665 - 13.2. Interaction of Light with Solids 667 - 13.3. Applications of the Optical Properties of Metals and Dielectrics 673 - 13.4. Electro-optical Phenomena and Devices 679 - 13.5. Lasers 688 - 13.6. Optical Communications 695 | 1.4 | 13.7. Miscellaneous Optical Properties and Effects 703 13.8. Perspective and Conclusion 705 Additional Reading 706 Questions and Problems 707 | |-----|--| | 4 | MAGNETIC PROPERTIES OF MATERIALS | | | 14.1. Introduction 711 14.2. Macroscopic Interaction between Magnetic Fields and Materials 713 14.3. Atomic Basis of Magnetism 717 14.4. The Magnetization Process: Magnetic Domains 724 14.5. Ferromagnetic Materials and Applications 731 14.6. Perspective and Conclusion 742 | | 15 | FAILURE AND RELIABILITY OF ELECTRONIC MATERIALS AND DEVICES | | | 15.1. Introduction 747 15.2. Reliability in Electronics: Past, Present, and Future 748 15.3. Mathematics of Failure and Reliability 752 15.4. Failure Mechanisms 763 15.5. Specific Examples of Failure Mechanisms 772 15.6. Perspective and Conclusion 783 | | | APPENDIX A: PROPERTIES OF SELECTED ELEMENTS (AT 20°C) 789 APPENDIX B: VALUES OF SELECTED PHYSICAL CONSTANTS 791 APPENDIX C: CONVERSION FACTORS 793 ANSWERS TO SELECTED PROBLEMS 795 INDEX 801 DOCUMENTATION FOR COMPUTER MODULES 829 |