620.11 PAR

Contents

.

	PREFACE List of Symbols	page	ix xi
	CHAPTER 1 PROPERTIES OF ENGINEERING MATERIALS		
1.1	Introduction		1
1.2	Strength and the stress-strain curve		3
1.3	Units of stress		10
1.4	Fracture energy		11
1.5	The role of density		15
1.0 Dofo	Properties of conventional materials		19
Rele	rences		20
	CHAPTER 2 THE PURSUIT OF HIGH STRENGTH		
2.1	Elastic strains in crystals		21
2.2	Stiffness of crystals 2		
2.3	Stiffness of polycrystalline solids		22
2.4	High specific modulus 2		
2.5	Theoretical strength and stiffness 2		
2.6	Attainment of theoretical strength 2		
2.7	Stress-raisers and brittleness		29
2.8	Strong monolithic solids		
2.9	I he dislocation and ductility		
2.10	Fibres and matrices for reinforcementsummary 3		
Refe	prences		38
	CHAPTER 3 MECHANICS OF REINFORCEMENT		
3.1	The unidirectional composite - macroscopictreatment		41
	3.1.1 Tensile strength		41
	3.1.2 Compressive strength		46
	3.1.3 Orientation and elasticity		48
3.2	Micromechanics — imperfectfibres		50

	3.2.1	Elastic stress-transfer	51
	3.2.2	Effective strength of short fibres	52
	3.2.3	Variable fibre strength and strength of composites	53
	3.2.4	Work of fracture in composites	55
3.3	Ducti	lity, creep, and fatigue in composites	56
	3.3.1	Ductility and creep	56
	3.3.2	Fatigue behaviour	58
3.4	Fabri	cation geometry	59
	3.4.1	Packing	59
	3.4.2	Random packing and aspect ratio	61
	3.4.3	Orientation by flow	61
	3.4.4	Fracture during flow	64
3.5	Limit	ations of fibre reinforcement	65
Ref	erences		66

CHAPTER 4 THE FIBRES

4.1 Conventional fibres and wires	09
4.1.1 Cellulose fibres	69
4.1.2 Asbestos fibres	70
4.1.3 Glass fibres	74
4.1.4 Metal wires	78
4.2 Fibres of high specific modulus	80
4.2.1 Boron type fibres	81
4.2.2 Whiskers and other single crystals	82
4.2.3 Carbon fibres	86
4.2.4 Ceramic fibres at high temperatures	89
4.3 Forms of reinforcement	90
4.3.1 Random bundles	91
4.3.2 Parallel forms	91
4.3.3 Cloths and fabrics	92
4.3.4 Wet processing of short fibres — grading	92
4.3.5 Alignment of short fibres	96
4.3.6 Demand and use	98
References	99

CHAPTER 5 REINFORCED PLASTICS

5.1	Resins and adhesion	101
	5.1.1 Resin characteristics	101
	5.1.2 Adhesion and coupling agents	104
	5.1.3 Joints	106
5.2	Moulding processes	107
	5.2.1 Sandwich construction	109
5.3	Continuously reinforced plastics	111
	5.3.1 Fibreglass	111

		CONTENTS	vii
	5.3.2	Carbon-fibre-reinforced plastics (CFRP)	117
	5.3.3	Boron-reinforced plastics	119
	5.3.4	Steel reinforcements	121
5.4	Plastic	es reinforced by short fibres	121
	5.4.1	Cellulose laminates	122
	5.4.2	Asbestos-reinforced plastics	125
	5.4.3	Reinforced thermoplastics	128
	5.4.4	Reinforcement with short fibres of high modulus	130
5.5	Low c	lensity composites	134
5.6	Comp	arison of properties	136
5.7	Appli	cations and limitations	137
	5.7.1	Replacing wooden structures	137
	5.7.2	Wound structures	138
	5.7.3	Transport	138
	5.7.4	Aviation	139
Refe	erences		142

CHAPTER 6 REINFORCED METALS

6.1	Potential advantages		144
6.2	Struct	tural metals	145
6.3	Approaches to fabrication		146
	6.3.1	Fibre $+$ metal = composite	147
	6.3.2	Two phases \rightarrow fibre in metal	149
	6.3.3	Post-forming operations	150
	6.3.4	Compatibility	151
6.4	Systems and their properties		152
	6.4.1	Reinforced copper	152
	6.4.2	Reinforced superalloys	155
	6.4.3	Reinforced titanium	158
	6.4.4	Light-alloy composites	159
6.5	Gener	ral	167
References		168	
	Appen	171	
	PROB	LEMS	173
	INDEX	ĸ	178