

Contents in Brief

1 Materials Science and Engineering, 2

PART D FUNDAMENTALS, 22

- 2 Atomic Scale Structures, 24
- 3 Crystal Structures, 64
- 4 Point Defects and Diffusion, 118
- 5 Linear, Planar, and Volume Defects, 154
- 6 Noncrystalline and Semicrystalline Materials, 196

PART MICROSTRUCTURAL DEVELOPMENT, 238

- 7 Phase Equilibria and Phase Diagrams, 240
- 8 Kinetics and Microstructure of Structural Transformations, 300

PART D PROPERTIES, 370

- Mechanical Properties, 372 9
- 10 Electrical Properties, 442
- 11 Optical and Dielectric Properties, 496

- 12 Magnetic Properties, 536
- Thermal Properties, 568 13
- 14 Composite Materials, 594
- 15 Materials-EnvironmentInteractions, 632
- MATERIALS SYNTHESIS AND PART M **DESIGN**, 688
 - 16 Materials Processing, 690
 - 17 Materials and Engineering Design, 748

APPENDICES

- Periodic Table of the Elements, 796 А
- в Physical and Chemical Data for the Elements, 798
- Atomic and Ionic Radii of the Elements, 801 С
- D Mechanical Properties, 803

Glossary, 818 References, 830 Index, 832

Contents

CHAPTER (1)

- Materials Science and Engineering, 2
- 1.1 Introduction, 3
- 1.2 The Role of Materials in Technologically Advanced Societies, 4
- 1.3 The Engineering Profession and Materials, 7
- 1.4 Major Classes of Materials, 9
 - 1.4.1 Metals, 9
 - 1.4.2 Ceramics, 10
 - 1.4.3 Polymers, 11
 - 1.4.4 Composites, 12
 - 1.4.5 Semiconductors, 14
- 1.5 Materials Properties and Engineering, 15
- 1.6 The Integrated Approach to Materials Engineering, *18*
- 1.7 Engineering Professionalism and Ethics, *19* Summary, *21*

PART **D** FUNDAMENTALS, 22

- CHAPTER (2) Atomic Scale Structures, 24
 - 2.1 Introduction, 25
 - 2.2 Atomic Structure, 25
 - 2.3 Thermodynamics and Kinetics, 29
 - 2.4 Primary Bonds, 33
 - 2.4.1 Ionic Bonding, 33
 - 2.4.2 Covalent Bonding, 37
 - 2.4.3 Metallic Bonding, 38
 - 2.4.4 Influence of Bond Type on Engineering Properties, 40
 - 2.5 The Bond-Energy Curve, 42
 - 2.6 Atomic Packing and Coordination Numbers, 46
 - 2.7 Secondary Bonds, 53
 - 2.8 Mixed Bonding, 55

- 2.9 The Structure of Polymer Molecules, 56 Summary, 59 Key Terms, 60 Homework Problems, 60
- CHAPTER (3) Crystal Structures, 64
 - 3.1 Introduction,65
 - 3.2 Bravais Lattices and Unit Cells, 66
 - 3.3 Crystals with One Atom per Lattice Site and Hexagonal Crystals. *69*
 - 3.3.1 Bodycentered Cubic Crystals, 69
 - 3.3.2 Face-centeredCubic Crystals, 72
 - 3.3.3 Hexagonal Close-packed Structures, 73
 - 3.4 Miller Indices, 76
 - 3.4.1 Coordinates of Points, 76
 - 3.4.2 Indices of Directions, 78
 - 3.4.3 Indices of Planes, 80
 - 3.4.4 Indices in the Hexagonal System, 82
 - 3.5 Densities and Packing Factors of Crystalline Structures, 82
 - 3.5.1 Linear Density, 83
 - 3.5.2 Planar Density, 84
 - 3.5.3 Volumetric Density, 86
 - 3.5.4 Atomic Packing Factors and Coordination Numbers, 87
 - 3.5.5 Close-packed Structures, 88
 - 3.6 Interstitial Positions and Sizes, 90
 - 3.6.1 Interstices in the FCC Structure, 90
 - 3.6.2 Interstices in the BCC Structure, 92
 - 3.6.3 Interstices in the HCP Structure, 92
 - 3.7 Crystals with Multiple Atoms per Lattice Site, *93*
 - 3.7.1 Crystals with Two Atoms per Lattice Site, 93

		3.7.2	Crystals with Three Atoms per Lattice Site, 97				
		3.7.3	Other Crystal Structures, 98				
	3.8	Liquid	Crystals, 101				
		Single	e Crystals and Polycrystalline ials, 101				
	3.10	Polymorphism, <i>102</i>					
	3.11	Anisot	tropy, 104				
	3.12	X-ray	Diffraction, 104				
		Sumn	nary, 110				
		Key T	erms, 111				
		Home	work Problems, 111				
CHAPTER (4)		Point Defects and Diffusion, 118					
		Introd	uction, 119				
	4.2		Defects, 119				
		4.2.1	Vacancies and Interstitials in Crystals, 120				
		4.2.2	Vacancies and Interstitials in Ionic Crystals, 122				
	4.3	Impur	ities, 124	¢			
		4.3.1	Impurities in Crystals, 125				
		4.3.2	Impurities in Ionic Crystals, 129				
	4.4	Solid-	State Diffusion, 131				
			Practical Examples of Diffusion, 131				
		4.4.2	A Physical Description of Diffusion (Fick's First Law), 133				
		4.4.3	Mechanisms of Diffusion in Covalent and Metallic Crystals, 136				
		4.4.4	Diffusion for Different Levels of Con- centration, 138				
		4.4.5	Mechanisms of Diffusion in Ionic Crystals, 140				
		4.4.6	Mechanisms of Diffusion in Polymers, 141				
		4.4.7	Fick's Second Law, 144				
			nary, 149				
		Key T	erms, 150				
		Home	ework Problems. 150				
CHAPTER 5	Linear, Planar, and Volume Defects, 154						
	5.1	Introd	uction, 155				
	5.2	Linear Defects, Slip, and Plastic Deforma- tion, 155					
		5.2.1	The Shear Strength of Deformable Single Crystals, 156				
		5.2.2	Slip in Crystalline Materials and Edge Dislocations, 158				
		5.2.3	Other Types of Dislocations, 165				

5.2.4 Slip Planes and Slip Directions in Metal Crystals, 168

- 5.2.5 Dislocations in Ionic, Covalent, and Polymer Crystals, 172
- 5.2.6 Other Effects of Dislocations on Properties, 177
- 5.3 Planar Defects, 5.3
 - 5.3.1 Free Surfaces in Crystals, 177
 - 5.3.2 Grain Boundaries in Crystals, 178
 - 5.3.3 Grain Size Measurement, 179
 - 5.3.4 Grain Boundary Diffusion. 181
 - 5.3.5 Other Planar Defects, 182
- 5.4 Volume Defects, 184
- 5.5 Strengthening Mechanisms in Metals, 185
 - 5.5.1 Alloying for Strength, 186
 - 5.5.2 Strain Hardening, 187
 - 5.5.3 Grain Refinement, 189
 - 5.5.4 Precipitation Hardening, 190
 - Summary, 191
 - Key Terms, 191
 - Homework Problems, 192
- CHAPTER (6) Noncrystalline and Semicrystalline Materials, 196
 - 6.1 Introduction, 197
 - 6.2 The Glass Transition Temperature, 197
 - 6.3 Viscous Deformation, 201
 - 6.4 Structure and Properties of Amorphous and Semicrystalline Polymers, 204
 - 6.4.1 Polymer Classification, 204
 - 6.4.2 Molecular Weight, 210
 - 6.4.3 Polymer Conformations and Configurations, 212
 - 6.4.4 Factors Determining Crystallinity of Polymers, 215
 - 6.4.5 Semicrystalline Polymers, 217
 - 6.4.6 The Relationship between Structure and T_g, 218
 - 6.5 Structure and Properties of Glasses, 218
 - 6.5.1 Ionic Glasses. 220
 - 6.5.2 Covalent Glasses, 224
 - 6.5.3 Metallic Glasses, 225
 - 6.6 Structure and Properties of Rubbers and Elastomers. 225
 - 6.6.1 Thermoset Elastomers, 226
 - 6.6.2 Thermoplastic Elastomers, 227
 - 6.6.3 Crystallization in Rubbers, 228
 - 6.6.4 Temperature Dependence of Elastic Modulus, 229
 - 6.6.5 Rubber Elasticity, 230
 - Summary, 233
 - Key Terms, 234
 - Homework Problems, 234

- CHAPTER (5

PART MICROSTRUCTURAL DEVELOP-MENT, 238

- CHAPTER (7) Phase Eauilibria and Phase Diagrams, 240
 - 7.1 Introduction, 241
 - 7.2 The One-Component Phase Diagram, 242
 - 7.3 Phase Equilibria in a Two-Component System, 246
 - 7.3.1 Specification of Composition, 246
 - 7.3.2 The Isomorphous Diagram for Ideal Systems, 247
 - 7.3.3 Phases in Eauilibrium and the Lever Rule, *249*
 - 7.3.4 Solidification and Microstructure of Isomorphous Alloys, 252
 - 7.3.5 Determination of Liquidus and Solidus Boundaries, 254
 - 7.3.6 Specific Isomorphous Systems, 255
 - 7.3.7 Deviations from Ideal Behavior, 256
 - 7.4 The Eutectic Phase Diagram, 261
 - 7.4.1 Definitions of Terms in the Eutectic System, 261
 - 7.4.2 Melting and Solidification of Eutectic Alloys, *263*
 - 7.4.3 Solidification of Off-Eutectic Alloys, 264
 - 7.4.4 Methods Used to Determine a Phase Diagram, *269*
 - 7.4.5 Phase Diagrams Containing Two Eutectics, 271
 - 7.5 The Peritectic Phase Diagram, 274
 - 7.6 The Monotectic Phase Diagram, 278
 - 7.7 Complex Diagrams, 279
 - 7.8 Phase Equilibria Involving Solid-to-Solid Reactions, 281
 - 7.8.1 Eutectoid Systems, 283
 - 7.9 Phase Equilibria in Three-Component Systems, 286
 - 7.9.1 Plotting Compositions on a Ternary Diagram, *28*7
 - 7.9.2 The Lever Rule in Ternary Systems, *290*
 - Summary, 291
 - Key Terms, 292

Homework Problems, 292

- CHAPTER (8) Kinetics and Microstructure of Structural Transformations, *300*
 - 8.1 Introduction, 301
 - 8.2 Fundamental Aspects of Structural Transformations, 302
 - 8.2.1 The Nature of a Phase Transformation, *302*

- 8.2.2 The Driving Force for a Phase Change, *303*
- 8.2.3 Homogeneous Nucleation of a Phase, 306
- 8.2.4 Heterogeneous Nucleation of a Phase, *308*
- 8.2.5 Matrix Precipitate Interfaces, 312
- 8.2.6 Growth of a Phase, 315
- 8.3 Applications to Engineering Materials, 318
 - 8.3.1 Phase Transformations in Steels, 318
 - 8.3.2 Precipitation from a Supersaturated Solid Solution, *333*
 - 8.3.3 Solidification and Homogenization of an Alloy, *339*
 - 8.3.4 Recovery and Recrystallization Processes, 345
 - 8.3.5 Sintering, 349
 - 8.3.6 Martensitic (Displacive) Transformations in Zirconia, 352
 - 8.3.7 Devitrification of an Oxide Glass, 354

8.3.8 Crystallization of Polymers, 355

- Summary, 358
- Key Terms, 358

Homework Problems, 359

PART D PROPERTIES, 370

- CHAPTER (9) Mechanical Properties, 372
 - 9.1 Introduction, 373
 - 9.2 Deformation and Fracture of EngineeringMaterials, 374
 - 9.2.1 Elastic Deformation, 374
 - 9.2.2 Viscoelastic Deformation, 378
 - 9.2.3 Plastic Deformation, 381
 - 9.2.4 Tensile Testing, 382
 - 9.2.5 Strengthening Mechanisms, 390
 - 9.2.6 Ductile and Brittle Fracture, 391
 - 9.2.7 Hardness Testing, 393
 - 9.2.8 Charpy Impact Testing, 396
 - 9.3 Brittle Fracture, 400
 - 9.3.1 Examples and Sequence of Events Leading to Brittle Fracture, 400
 - 9.3.2 Griffith-Orowan Theory for Predicting Brittle Fracture, 403
 - 9.4 Fracture Mechanics: A Modem Approach, *405*
 - 9.4.1 The Stress Intensity Parameter, 405
 - 9.4.2 The Influence of Sample Thickness, 406
 - 9.4.3 Relationship between Fracture Toughness and Tensile Properties, 409

กองสนเทสวิทยาสาสตร์และเทคโนโลย

- 9.4.4 Application of Fracture Mechanics to Various Classes of Materials, 409
- 9.4.5 Experimental Determination of Fracture Toughness, *412*
- 9.5 Fatigue Fracture, 414
 - 9.5.1 Definitions Relating to Fatigue Fracture, 414
 - 9.5.2 Fatigue Testing, 416
 - 9.5.3 Correlations between Fatigue Strength and Other Mechanical Properties, *417*
 - 9.5.4 Microscopic Aspects of Fatigue, 419
 - 9.5.5 Prevention of Fatigue Fractures, 420
 - 9.5.6 A Fracture Mechanics Approach to Fatigue, 421
- 9.6 Time-Dependent Behavior, 424
 - 9.6.1 Environmentally Induced Fracture, *4*24
 - 9.6.2 Creep in Metals and Ceramics, 425
 - 9.6.3 Mechanisms of Creep Deformation, *4*27
 - Summary, 432
 - Key Terms, 433
 - Homework Problems. 433

CHAPTER (10) Electrical Properties, 442

- 10.1 Introduction, 443
- 10.2 Electrical Conduction, 444
 - 10.2.1 Charge per Carrier, 447
 - 10.2.2 Charge Mobility, 448
 - 10.2.3 Energy Band Diagrams and Number of Charge Carriers, 451
 - 10.2.4 The Influence of Temperature on Electrical Conductivity and the Fermi-Dirac Distribution Function, 455
 - 10.2.5 Conductors, Semiconductors, and Insulators, *460*
 - 10.2.6 Ionic Conduction Mechanisms, 465
 - 10.2.7 Effects of Defects and Impurities, 467
 - 10.2.8 Conducting Polymers, 469
 - 10.2.9 Superconductivity, 470
 - 10.2.10 Devices and Applications, 472
- 10.3 Semiconductors, 473
 - 10.3.1 Intrinsic and Extrinsic Conduction, 473
 - 10.3.2 Compound Semiconductors, 480
 - 10.3.3 Role of Defects, 481
 - 10.3.4 Simple Devices, 482
 - 10.3.5 Microelectronics, 487
 - Summary, 489

Key Terms, *490* Homework Problems, *490*

- CHAPTER (11) Optical and Dielectric Properties, 496
 - 11.1 Introduction, 497
 - 11.2 Polarization, 497
 - 11.2.1 Electronic Polarization, 498
 - 11.2.2 Ionic Polarization, 500
 - 11.2.3 Molecular Polarization, 500
 - 11.2.4 Interfacial Polarization, 501
 - 11.2.5 Net Polarization, 501
 - 11.2.6 Applications, 502
 - 11.3 Dielectric Constant and Capacitance, 504
 - 11.3.1 Capacitance, 504
 - 11.3.2 Permittivity and Dielectric Constant. 505
 - 11.3.3 Dielectric Strength and Breakdown, 507
 - 11.4 Dissipation and Dielectric Loss, 509
 - 11.5 Refraction and Reflection, 511
 - 11.5.1 Refraction, 512
 - 11.5.2 Specular Reflection, 514
 - 11.5.3 Dispersion, 516
 - 11.5.4 Birefringence, 517
 - 11.5.5 Application: Optical Waveguides, *518*
 - 11.6 Absorption, Transmission, and Scattering, 520
 - 11.6.1 Absorption, 521
 - 11.6.2 Absorption Coefficient, 522
 - 11.6.3 Absorption by Chromophores, 523
 - 11.6.4 Scattering and Opacity, 525
 - 11.7 Electronic Processes, 526
 - 11.7.1 X-ray Fluorescence, 526
 - 11.7.2 Luminescence, 527
 - 11.7.3 Phosphorescence, 528
 - 11.7.4 Thermal Emission, 528
 - 11.7.5 Photoconductivity, 529
 - 11.7.6 Application: Lasers, 529
 - Summary, 531
 - Key Terms, 532
 - Homework Problems, 532
- CHAPTER (12) Magnetic Properties, 536
 - 12.1 Introduction, 537
 - 12.2 Materials and Magnetism, 537
 - 12.3 Physical Basis of Magnetism, 538
 - 12.4 Classification of Magnetic Materials, 541
 - 12.5 Diamagnetism and Paramagnetism, 541

Atmospheric Attack, 674

	12.6	Ferroma	agnetism, <i>54</i> 2				14.3.4	Role of Interfaces, 606
		12.6.1	Magnetic Domains,	544			14.3.5	Fiber Architecture, 609
			Response of Ferrom als to External Fields	0			14.3.6	Strengthening in Aggregate Composites, 611
		12.6.3	The Shape of the Hy	/steresis		14.4	Practic	al Composite Systems, 611
			Loop, 548					Metal-Matrix Composites, 611
		12.6.4	Microstructural Effec	ts, <i>549</i>				Polymer-Matrix Composites, 612
		12.6.5	Temperature Effects	, 549				Ceramic-Matrix Composites, 612
			Estimating the Magn					Carbon-Carbon Composites, 614
	12.7		magnetism and Ferr	'i-		14 5		ion of Composite Properties, 614
		-	ism, 550	- /		14.0		Estimation of Fiber Diameter, Vol-
			and Applications, 5				14.5.1	ume Fraction, and Density of the
			Permanent Magnets					Composite, 614
			Transformer Cores,				14.5.2	Estimation of Elastic Modulus and
			Magnetic Storage De					Strength, 615
		•	onducting Magnets, 5	59			14.5.3	Estimation of the Coefficient of Ther-
		Summa	•					mal Expansion, 619
		•	rms, 562 rork Problems. 562				14.5.4	Fracture Behavior of Composites, 619
CHAPTER 13	Therr	mal Pro	perties, 568				14.5.5	Fatigue Behavior of Composites, 620
	13.1	Introduc	ction, <i>569</i>			14.6	Other /	Applications of Composites, 623
	13.2	Coeffic	ient of Thermal Expa	nsion, <i>569</i>			14.6.1	Estimation of Nonmechanical
	13.3	Heat C	apacity, 573					Properties of Composites, 626
	13.4	Therma	al Conduction Mecha	nisms, 576			Summ	ary, 626
	13.5	Therma	al Stresses, 581				Key Te	erms, 627
	13.6	Applica	ations, 585				Home	vork Problems. 627
		13.6.1	Bimetallic Strip, 585					
			Thermal Insulation,		CHAPTER (15)	Mate	rials-E	nvironment Interactions, 632
		13.6.3	Thermal Shock-Res	istant	0	15.1	Introdu	iction, 633
		1264	Cookware, 586	97		15.2	Liquid	-Solid Reactions, 633
			Tempered Glass, 58 Support Structure for				•	Direct Dissolution Mechanisms, 635
		15.0.5	scopes, 588					Electrochemical Corrosion—Half-Cell
		13.6.6	Ceramic-to-Metal Jo	ints, <i>589</i>				Potentials, 639
		13.6.7	Cryogenic Materials	, 589			15.2.3	Kinetics of Corrosion Reactions, 646
		Summa	ary, <i>590</i>				15.2.4	Specific Types of Corrosion, 648
		Key Te	erms, <i>590</i>				15.2.5	Corrosion Prevention, 660
		Homew	vork Problems, 590			15.3	Direct tions),	Atmospheric Attack (Gas-Solid Reac- 664
CHAPTER (14)	Com	posite N	Materials, 594				15.3.1	Alteration of Bond Structures by
0	14.1	Introdu	ction, 595					Atmospheric Gases, 665
	14.2		and Classification of				15.3.2	Formation of Gaseous Reaction Products, 666
	14.2		osites, 596 al Concepts, 599				15.3.3	Protective and Nonprotective Solid
	14.5		Strengthening by Fi	ber Reinforce-				Oxides, 667
			ment, 600				15.3.4	Kinetics of Oxidation, 669
		14.3.2	Characteristics of Fi Materials, 601	ber			15.3.5	Using Atmospheric "Attack" to Advantage, 673
		14.3.3	Characteristics of M	atrix			15.3.6	Methods of Improving Resistance to

14.3.3 Characteristics of Matrix Materials, 606

	15.4	Friction and Wear (Solid–Solid Interactions), 676 15.4.1 Wear Mechanisms, 676			
		15.4.2 Designing to Minimize Friction and Wear, 678			
	15.5	Radiation Damage, 679			
		Summary, 681			
		Key Terms, 682			
		Homework Problems, 682			
PART 🚺		FERIALS SYNTHESIS AND SIGN, 688			
CHAPTER 16	Materials Processing, 690				
		Introduction, 691			
	16.2	Process Selection Criteria and Interrelation- ship among Structure, Processing, and Prop- erties, <i>691</i>			
	16.3	Casting, 692			
		16.3.1 Metal Casting, 693			
		16.3.2 Casting of Ceramics, 697			
		16.3.3 Polymer Molding, 698			
	16.4	Forming, 700			
		16.4.1 Metal Forming, 700			
		Case Study: Process Selection for a Steel Plate, 701			
		16.4.2 Forming of Polymers, 707			
		16.4.3 Forming of Ceramics and Glasses, 709			
	16.5	Powder Processing, 711			
		16.5.1 Powder Metallurgy, 711			
		Case Study: Specification of Powder Size Distribution for Producing Steel Sprockets, 713			
		16.5.2 Powder Processing of Ceramics, 714			
	16.6	Machining, 714			
	16.7	Joining Processes, 716			
		16.7.1 Welding, Brazing, and Soldering, <i>716</i>			
		16.7.2 Adhesive Bonding, 718			
		16.7.3 Diffusion Bonding, 720			
		16.7.4 Mechanical Joining, 721			
	16.8	Surface Coatings and Treatments, 721			
	10.0	16.8.1 Application of Coatings and			
		Painting, 722			
		16.8.2 Surface Treatments, 723			
		Case Study: Material and Process Selection for Automobile Engine Crank- shafts, 724			

	16.9	Single-Crystal and Semiconductor Pro- cessing, 724				
		16.9.1 Growth and Processing of Single Crystals, 725				
		16.9.2 Oxidation, 725				
		16.9.3 Lithography and Etching, 727				
		Case Study: Mask Selection for Doping of Si Wafers, 727				
		16.9.4 Diffusion and Ion Implantation, 728				
		16.9.5 Interconnection, Assembly, and Packaging, 729				
	16.10) Fiber Manufacturing, 731				
		16.10.1 Melt-Spinning, 731				
		16.10.2 Solution Spinning, 732				
		16.10.3 Controlled Pyrolysis, 733				
		16.10.4 Vapor Phase Processes, 735				
		16.10.5 Sintering, 735				
		16.10.6 Chemical Reaction, 736				
	16.11	Composite-ManufacturingProcesses, 737				
		16.11.1 Polymer-Matrix Composites (PMCs), 737				
		16.11.2 Metal-Matrix Composites (MMCs), 738				
		16.11.3 Ceramic-Matrix Composites (CMCs), 739				
		Summary, 741				
		Key Terms, 742				
		Homework Problems, 743				
CHAPTER (17)	Mate	rials and Engineering Design, 748				
	17.1	Introduction, 749				
	17.2	Unified Life-Cycle Cost Engineering (ULCE), 750				
		17.2.1 Design and Analysis Costs, 751				
		17.2.2 Manufacturing Costs, 751				
		17.2.3 Operating Costs, 751				
		17.2.4 Cost of Disposal, 752				
		Case Study: Cost Consideration in Materials Selection, 752				
	17.3	Material and Process Selection, 754				
		17.3.1 Databases for Material Selection, 755				
		17.3.2 Materials and Process				
		Standards, 755				
		17.3.3 Impact of Material Selection on the Environment, 757				
		Case Study: Material Selection for Elec- tronic Package Casing, 760				
		Case Study: Material Selection for a Nuclear Waste Container, 763				

Case Study: Development of Lead-Free, Free-Cutting Copper Alloy, 764

Case Study: Choosing Optimum Locations for Probes during Ultrasonic Testing, 790 Summary, 791 Homework Problems, 792

APPENDICES

- A Periodic Table of the Elements, 796
- B Physical and Chemical Data for the Elements, 798
- C Atomic and Ionic Radii of the Elements, 801
- D Mechanical Properties, 803

Glossary, *818* References, *830* Index, *832*

17.4 Risk Assessment and Product Liability, 768 17.4.1 Failure Probability Estimation, 769

17.4.2 Liability Assessment, 771

17.4.3 Quality Assurance Criteria, 771

Case Study: Inspection Criterion for Large Industrial Fans, 772

- 17.5 Failure Analysis and Prevention, 774
 - 17.5.1 General Practice in Failure Analysis, 774
 - Case Study: Failure Analysis of Seam-Welded Steam Pipes, 778
 - Case Study: Failure in Wire Bonds in Electronic Circuits, **781**
 - Case Study: Failure in a Polyethylene Pipe, 782
 - 17.5.2 Failure Analysis in Composite Materials, 783
 - 17.5.3 Failure Prevention, 786
 - Case Study: Inspection Interval Estimation for an Aerospace Pressure Vessel, 786