Contents

Preface xvii

Foreword by Michel Barsoum xxiii

About the Authors xxv

Section One Fundamentals of Nature and Characteristics of Ceramics

1. (Ceramics:	Definition and Characteristics	3
1.1	Materia	Is Classification 3	
1.2	Historic	cal Perspective; Definition and Classification of Ceramics	4
1.3	Propert	ies of Structural Ceramics 8	
1.4	-	tions of Structural Ceramics 9	
Refe	rences	12	
2. 1	Bonding, S	Structure, and Physical Properties	14
2.1	Primary	Bonding 15	
	2.1.1	Ionic Bonding 15	
	2.1.2	Covalent Bonding 18	
	2.1.3	Pauling's Rules 19	
	2.1.4	Secondary Bonding 21	
2.2	Structur	re 21	
	2.2.1	NaCl-type Rock-Salt Structure 22	
	2.2.2	ZnS-Type Wurtzite Structure 22	
	2.2.3	ZnS-Type Zinc Blende Structure 23	
	2.2.4	CsCl Cesium Chloride Structure 23	
	2.2.5	CaF_2 Fluorite Structure 23	
	2.2.6	Antifluorite Structure 24	
	2.2.7	Rutile Structure 24	
	2.2.8	Al_2O_3 Corundum Structure 24	
	2.2.9	Spinel Structure 25	
	2.2.10	Perovskite Structure 26	
	2.2.11	Ilmenite Structure 26	
	2.2.12	Silicate Structures 26	

viii Contents

2.3 Oxide Ceramics 282.4 Non-Oxide Ceramics 30References 33

3. N	/lechanica	al Behavior of Ceramics	34
3.1	Theory	of Brittle Fracture 34	
	3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	Theoretical Cohesive Strength34Inglis Theory35Griffith's Theory37Irwin's Theory39Concept of Fracture Toughness39	
3.2 3.3 3.4	Strengt	ng in Brittle Materials 40 th Variability of Ceramics 42 s of the Fracture of Brittle Solids 42	
	3.4.1	Weakest Link Fracture Statistics 44	
3.5	Basic N	Mechanical Properties 48	
	3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6	Vickers Hardness 48 Instrumented Indentation Measurements 48 Compressive Strength 50 Flexural Strength 51 Elastic Modulus 52 Fracture Toughness 53	
		 3.5.6.1 Long Crack Methods 54 3.5.6.2 Fracture Toughness Evaluation Using Indentation Cracking 55 	
3.6 Refer	Toughe ences	ening Mechanisms 59 63	
Sect	ion Two	Processing of Ceramics	
4. S	ynthesis	of High-Purity Ceramic Powders	67
4.1	Synthe	sis of ZrO ₂ Powders 67	

- 4.2 Synthesis of TiB_2 Powders 68
- 4.3 Synthesis of Hydroxyapatite Powders 70
- 4.4 Synthesis of High-Purity Tungsten Carbide Powders 71 References 75

76

References 75

5. Sintering of Ceramics

- 5.1Introduction765.2Classification78
- 5.3 Thermodynamic Driving Force 79

Contents ix

105

- 5.4 Solid-State Sintering 82
- 5.5 Competition between Densification and Grain Growth 84
- 5.6 Liquid-Phase Sintering 88
- 5.7 Important Factors Influencing the Sintering Process 90
- 5.8 Powder Metallurgical Processes 92

5.8.1 5.8.2	Ball Milling 92 Compaction 94	
	5.8.2.1 Cold Pressing 94	
	5.8.2.2 Cold Isostatic Pressing	96
5.8.3	Pressureless Sintering 97	
5.8.4	Reactive Sintering 98	
5.8.5	Microwave Sintering 99	
References	103	

6. Thermomechanical Sintering Methods

6.1 Hot Pressing 105 6.2 Extrusion 108 6.3 Hot Isostatic Pressing 110 6.4 Hot Rolling 112 6.5 Sinter Forging 114 Spark Plasma Sintering 6.6 116 References 118

Section Three Surface Coatings

7.	. Environment and Engineering of Ceramic Materials				
7.1	Enviro	onmental Influence on Properties of Engineering Ceramics	124		
	7.1.1	Oxidation Resistance 125			
	7.1.2	Corrosion Resistance 126			
	7.1.3	Creep Resistance 126			
	7.1.4	Hard Bearing Surfaces 126			
	7.1.5	Thermal and Electrical Insulation 126			
	7.1.6	Abrasion-Resistant Ceramics 127			
	7.1.7	Fretting Wear Resistance, Surface Fatigue, Impact Resistance	127		
	7.1.8	Erosion and Cavitation Resistance 127			
7.2	Classif	fication and Engineering of Ceramic Materials 128			
	7.2.1	Non-Oxide Ceramics 128			
	7.2.2	Oxide Ceramics 132			
Ref	erences	135			

x Contents

8. Thermal Spraying of Ceramics

8.1	Mechanism of Thermal Spraying 137					
	8.1.1 8.1.2	Advantages of Thermal Spraying140Disadvantages of Thermal Spraying141				
8.2	Classific	cation of Thermal Spraying 141				
	8.2.1	Combustion Thermal Spraying 142				
		8.2.1.1Flame (Powder or Wire) Spraying1428.2.1.2High-Velocity Oxy-Fuel Spraying1448.2.1.3Detonation Spray Technique145				
	8.2.2 Electric Arc Spraying 1488.2.3 Cold Spraying 1498.2.4 Plasma Spraying 150					
		8.2.4.1Atmospheric Plasma Spraying1528.2.4.2Vacuum Plasma Spraying154				
8.3	Splat Fo	rmation and Spread 154				
8.4	Near Net Shape Forming 156					
8.5	Overvie	w 157				
Referen	ices	158				

9. Coatings and Protection of Structural Ceramics

9.1 Coatings 160 9.2 **Protective Coatings** 162 9.2.1 **Biological Applications** 162 9.3 **Rocket Nozzle Inserts** 163 Thermal Barrier Coatings 9.4 165 9.5 Wear Resistance 166 Corrosion Protection by Ceramics 9.6 168 **Optically Transparent Ceramics** 9.7 169 Ceramic Pottery and Sculptures 9.8 169

References 170

Section Four Processing and Properties of Toughened Ceramics

<u>10.</u> T	oughness Optimization in Zirconia-Based Ceramics		175
10.1 10.2 10.3	Introduction175TransformationCharacteristics of Tetragonal ZirconiaPhaseEquilibria and Microstructure177	176	

160

10.4	Transformation Toughening 178
	10.4.1Thermodynamics of Transformation17910.4.2Micromechanical Modeling180
10.5 10.6 10.7	Stabilization of Tetragonal Zirconia182Production and Properties of Y-TZP Ceramics183Different Factors Influencing Transformation Toughening184
	10.7.1Grain Size 187 10.7.2Grain Shape and Grain Boundary Phase 188 10.7.3Yttria Content 192 10.7.4Yttria Distribution 193 10.7.5 M_S Temperature 197 10.7.6Transformation Zone Size and Shape 197 10.7.7Residual Stress 199
10.8	Additional Toughening Mechanisms19910.8.1Stress-Induced Microcracking20010.8.2Ferroelastic Toughening201
10.9 10.10	Coupled Toughening Response203Toughness Optimization in Y-TZP-Based Composites203
	10.10.1Influence of Thermal Residual Stresses20610.10.2Influence of Zirconia Matrix Stabilization207
10.11	Outlook 208

References 208

 Materials Processing and Property Measurements 216 Microstructural Development 217 Mechanical Properties 220
I
4 Mechanical Properties 220
11.4.1Load-Dependent Hardness Properties22611.4.2R-Curve Behavior228
5 Concluding Remarks 230
Ferences 232

12. 1	4		
12.1	Emergence of MAX Phases 234		
12.2	Classification of MAX Phases 2	35	
12.3	Damage Tolerance of MAX Phases	238	

xii Contents

12.4Wear of Ti3SiC2 MAX Phase24412.5Concluding Remarks254References254

Section Five High-Temperature Ceramics

13. Overview: High-Temperature Ceramics

13.1 13.2	Introduction 259 Phase Diagram and Crystal Structure 260	
13.3		61
	13.3.1Preparation of TiB2 Powder26113.3.2Densification and Microstructure of Binderless TiB226	5
13.4	Use of Metallic Sinter-Additives on Densification and Properties 269	
13.5	Influence of Nonmetallic Additives on Densification and Properties 271	
13.6	Important Applications of Bulk TiB ₂ -Based Materials 281	
13.7	Concluding Remarks 281	
Referen	nces 283	

259

14. Processing and Properties of TiB₂ and ZrB₂ with Sinter-Additives 286

- 14.1 Introduction 286
- 14.2 Materials Processing 287
- 14.3 TiB₂-MoSi₂ System 288
 - 14.3.1 Densification, Microstructure, and Sintering Reactions 288
 - 14.3.2 Mechanical Properties 288
 - 14.3.3 Depth Sensing Instrumented Indentation Response 290
 - 14.3.4Residual Strain-Induced Property Degradation293
 - 14.3.5 Relationship between Indentation Work Done and Phase Assemblage 295
- 14.4 TiB_2 - $TiSi_2$ System 296
 - 14.4.1 Sintering Reactions and Densification Mechanisms 296
 - 14.4.2 Mechanical Properties 298
 - 14.4.3 Residual Stress or Strain and Property Degradation 298
- 14.5 ZrB_2 -SiC-TiSi₂ Composites 300
- 14.6 Concluding Remarks 301

References 302

15. Hi	igh-Ten	perature Mechanical and Oxidation Properties	305
15.1	Introd	uction 305	
15.2	High-	Temperature Property Measurements 309	
15.3	High-	Temperature Mechanical Properties 310	
	15.3.1 15.3.2	High-Temperature Flexural Strength310Hot Hardness Property311	
15.4	Oxidat	tion Behavior of TiB ₂ -MoSi ₂ 312	
15.5	Oxida	tion Behavior of TiB_2 -TiSi ₂ 315	
	15.5.1	Oxidation Kinetics 315	
	15.5.2	Morphological Characteristics of Oxidized Surfaces 317	
15.6	Conclu	uding Remarks 317	
Refere	nces	318	

Section Six	Nanoceramic	Composites	-11- 12	· .	-
1000					

	6. Overview: Relevance, Characteristics, and Applications of Nanostructured Ceramics						
16.1	Introdu						
16.2	Problems Associated with Synthesis of Nanosized Powders 326						
	16.2.1 16.2.2	Methods of Synthesis of Nanoscaled Ceramic Powders326Challenges Posed by the Typical Properties of NanoscaledPowders327					
16.3	Challenges Faced during Processing 328						
	16.3.1 16.3.2	Problems Arising due to Fine Powders328Challenges Faced due to Agglomerated Powders329					
16.4	Process	sing of Bulk Nanocrystalline Ceramics 330					
	16.4.1	Processes Used for Developing Bulk Nanocrystalline Ceramics 330					
	16.4.2	Mechanisms Leading to Enhanced Sintering Kinetics on Pressure Application 331					
16.5	Mechanical Properties of Bulk Ceramic Nanomaterials 332						
	16.5.1	Mechanical Properties 332					
		16.5.1.1 Hardness and Yield Strength 33216.5.1.2 Fracture Strength and Fracture Toughness 33516.5.1.3 Superplasticity 338					

xiv Contents

16.6Applications of Nanoceramics33916.7Conclusion and Outlook341References343

17. 0	xide Nanoceramic Composites	347
17.1 17.2 17.3 17.4	Overview347Al2O3-Based Nanocomposites349ZrO2-Based Nanocomposites355Case Study356	
	 17.4.1 Yttria-Stabilized Tetragonal Zirconia Polycrystal Nanoceramics 17.4.2 ZrO₂-ZrB₂ Nanoceramic Composites 357 	356
Refere	ences 363	
	licrostructure Development and Properties of Non-Oxide eramic Nanocomposites	366
18.1 18.2	Nanocomposites Based on Si3N4366Other Advanced Nanocomposites371	
	 18.2.1 Mullite-SiC 371 18.2.2 Yttrium Aluminum Garnet-SiC 371 18.2.3 SiC-TiC 371 18.2.4 Hydroxyapatite-ZrO₂ Nanobiocomposites 371 18.2.5 Stress-Sensing Nanocomposites 372 	
18.3	WC-Based Nanocomposites 372	
	18.3.1Background37218.3.2WC-ZrO2 Nanoceramic Composites37518.3.3WC-ZrO2-Co Nanocomposites38018.3.4Toughness of WC-ZrO2-Based Nanoceramic Composites38418.3.5Comparison with Other Ceramic Nanocomposites385	
Refere	ences 387	
Secti	on Seven Bioceramics and Biocomposites	ri.
19. O	verview: Introduction to Biomaterials	393
19.1 19.2 19.3	Introduction393Hard Tissues394Some Useful Definitions and Their Implications395	
	10.3.1 Riomaterial 305	

- 19.3.1Biomaterial39519.3.2Biocompatibility397
- 19.3.3 Host Response 397

19.4 19.5 19.6	Cell-Material Interaction398Bacterial Infection and Biofilm Formation400Different Factors Influencing Bacterial Adhesion402				
	19.6.1 19.6.2 19.6.3	Material Factors 404 Bacteria-Related Factors 405 External Factors 406			
19.7 19.8	Experimental Evaluation of Biocompatibility406Overview of Properties of Some Biomaterials413				
	19.8.1 19.8.2	Coating on Metals413Glass-Ceramics-Based Biomaterials417			
19.9 Referen	Outlool nces	c 418 419			
20. Ca	lcium P	hosphate-Based Bioceramic Composites	422		
20.1 20.2 20.3 20.4	Calciun	ction 422 t Ceramics 424 n Phosphate-Based Biomaterials 425 n Phosphate-Mullite Composites 428			
	20.4.1 20.4.2	Mechanical Properties430Biocompatibility (In Vitro and In Vivo)431			
20.5 20.6					
	20.6.1 20.6.2	Hydroxyapatite–Ag System 437 Hydroxyapatite–ZnO System 439			
Referen	nces	443			
21. Tr	ibologica	al Properties of Ceramic Biocomposites	448		
21.1 21.2 21.3		ction 448 gy of Ceramic Biocomposites 449 gical Properties of Mullite-Reinforced Hydroxyapatite 450			
	21.3.1 21.3.2	Materials and Experiments451Effect of Lubrication on the Wear Resistance of Mullite-ReinforcedHydroxyapatite451			
	21.3.3	Surface Topography of Mullite-Reinforced Hydroxyapatite after Fret Wear 454	tting		
21.4		gical Properties of Plasma-Sprayed Hydroxyapatite Reinforced rbon Nanotubes 454			
	21.4.1	Bulk Wear Resistance of Hydroxyapatite Reinforced with Carbon Nanotubes 454			

xvi Contents

- 21.4.2 Nanomechanical Properties of Hydroxyapatite Reinforced with Carbon Nanotubes 457
- 21.4.3 Nanoscratching of Hydroxyapatite Reinforced with Carbon Nanotubes 461

21.5Laser Surface Treatment of Calcium Phosphate Biocomposites461References470

Index 472