Contents

Preface to the Reissue of the Materials Characterization Series xi

Preface to Series xii

Preface to the Reissue of Characterization of Ceramics xiii

Preface xiv

Contributors xvii

POWDER AND PRECURSOR PREPARATION BY SOLUTION TECHNIQUES

1.1 Introduction 1 Mixed Oxide Processing 2, Chemical Synthesis of Powders 2
1.2 Powder Characterization 3

Physical Characteristics 3, Chemical Properties 4

 Precursor Powder Synthesis 8
 Speciation and Supersaturation 8, Growth 10, Nucleation 19, Agglomeration 22

1.4 Summary 23

POWDER PREPARATION BY GAS-PHASE TECHNIQUES

- 2.1 Introduction 29
- 2.2 Powder Production by Thermal Decomposition Techniques 30 Aerosol Precursor Processes 30, Vapor Precursor Processes 33
- 2.3 Powder Production by Plasma Techniques 35
- 2.4 Powder Production by Supercritical Fluid Techniques 37

- 2.5 Powder Characterization 39
- 2.6 Summary 40

FORMATION OF CERAMIC FILMS AND COATINGS

- 3.1 Introduction 43
- **3.2** Film Deposition and Coating Processes 44 Physical Vapor Deposition 44, Chemical Vapor Deposition 45, Solution and Sol–Gel Techniques 45, Thermal Spray Processing 46, Hard Carbon Coatings 46
- Physical Characterization 47
 Density, Porosity and Voids 47, Morphology 48, Thickness 48, Surface Finish 49
- 3.4 Chemical Characterization 50
 Elemental Analysis 50, Chemical State Analysis 53, Microstructure 56
- 3.5 Mechanical Characterization 57 Adhesion 57, Hardness 59, Internal Stress 60
- 3.6 Summary 60

CONSOLIDATION OF CERAMIC THICK FILMS

- 4.1 Introduction 63
- 4.2 Thick Film Processing 64
- 4.3 Characterization of Ceramic Thick Film Consolidation 65 Characterization of Films Before Thermal Processing 65, Characterization of Thick Films During Thermal Processing 68, Characterization of Sintered Thick Films 70
- 4.4 Summary 75

CONSOLIDATION OF BULK CERAMICS

- 5.1 Introduction 77
- 5.2 Ceramic Consolidation 78 Green Body Fabrication 78, Pre-Sinter Thermal Processing 79, Sintering/Thermal Consolidation 80
- 5.3 Characterization of Ceramics 82 Characteristics and Characterization of Green Ceramic Compacts 83, Characterization of Pre-Sinter Thermal Processes 90, Characteristics and Characterization of Sintered Ceramics 90
- 5.4 Summary 96
- vi Contents

INORGANIC GLASSES AND GLASS-CERAMICS

6.1	Introduction 103
6.2	Possible Surface Analytical Artifacts 104
6.3	XPS Studies of Bonding in Glass 108
6.4	Corrosion in Water 110 Water Vapor 111, Aqueous Solutions 112
6.5	Glass Crystallization 114

CERAMIC MICROSTRUCTURES

7.1	Introd	uction	119
/••	muou	action	11/

- 7.2 Bulk Microstructural Features 120
 Grain Size, Shape, and Growth 120, Connectivity 122, Boundary Layers and Inclusions 123, Porosity and Density 123
- 7.3 Interfaces and Planar Defects 124
 Grain Boundaries and Domain Boundaries 124, Heterogeneous Interfaces 125, Stacking Faults and Twins 126
- 7.4 Dislocations 127
- 7.5 Methods of Phase Identification 129
 Phase Distribution 130, Crystal Structure of Phases 131, Chemical Composition of Phases 132
- 7.6 Stereology for Phase Quantification 133Grain Size and Mean Lineal Intercept 134, Volume Fraction of Phases 135
- 7.7 Summary 135

CERAMIC REACTIONS AND PHASE BEHAVIOR

- 8.1 Introduction 137
- 8.2 Starting Materials 140
- 8.3 Phase Equilibria 140 General Aspects 140, Determining the Chemical and Structural Aspects 141, Determining the Physical Variables 154
- 8.4 Rates and Mechanisms of Reaction 156
 General Considerations 156, Decomposition of Precursors 158, Solid-Solid Reactions 161, Solid-Liquid Reactions 164, Solid-Gas Reactions 165
- 8.5 Summary 166

MECHANICAL PROPERTIES AND FRACTURE

- 9.1 Introduction 169
- 9.2 The Fracture Process 169 Mechanical Strength of Brittle Materials 169, Flaws, Statistics of Fracture, and Measurement Techniques 171, Subcritical Crack Growth 173
- 9.3 Generation of Fracture Surface Features 174 Features Produced by Crack Interactions 174, Mist and Velocity Hackle 178
- 9.4 Procedures and Equipment Used in Fractography 181
- 9.5 Applications of Fractography 182
 Failure Analysis Using Fractography 182, The Use of Fractography in Design Development 182, Fractography in Materials Development 186, Fractography in Materials Research 187

CERAMIC COMPOSITES

- 10.1 Introduction 189
- 10.2 Mechanical Properties of Ceramic Composites 191
 R-Curve Behavior 191, Creep 193, Fracture Toughess 195, Flaws 198, Fatigue Crack Propagation Resistance 199, Fracture Mode 200, Adhesion 201
- 10.3 Oxidation Resistance of Ceramic Composites 202
- Electrical Properties of Ceramic Composites 204
 Piezoelectricity 204, Voltage-Dependent Conductivity 205
- 10.5 Summary 206

GLASS AND CERAMIC JOINTS

- 11.1 Introduction 211
- 11.2 Characterization of Interfaces 212
- 11.3 Methods of Joining 213Mechanical Joining 213, Direct Joining 214, Indirect Joining 214
- 11.4 Fundamentals of Interfacial Bonding: Wetting and Spreading 216
- 11.5 Reactive Metal Brazing of Aluminum Nitride 219
 Wetting Studies 219, Interfacial Reactions 222, XPS Characterization of Ti-AlN Interfaces 223, TEM Characterization of Ti-AlN Interfaces 224
- 11.6 Summary 225

ELECTRONIC AND MAGNETIC CERAMICS

- 12.1 Introduction 229
- 12.2 Insulators and Capacitor Materials 230 Ceramic Insulators 230, Ceramic Capacitor Materials 232
- 12.3 Piezoelectrics 234
- 12.4 Pyroelectric Ceramics 236
- 12.5 Ferroelectric Ceramics 237
- 12.6 Ceramic Superconductors 238
- 12.7 Ferrites 239
- 12.8 Ceramic Sensors 241
- 12.9 Ceramic Thin Films 242

NONDESTRUCTIVE EVALUATION

- 13.1 Introduction 253
- 13.2 X-ray Techniques 255 Radiography 255, Tomography 256
- 13.3 Ultrasonic Techniques 257
 Background 257, Ultrasonic Time of Flight 258, Ultrasonic
 Spectroscopy 259, Scanning Laser Acoustic Microscopy (SLAM) 260, Acoustic Microscopy 260, Ultrasonic Birefringence 261
- 13.4 Other Techniques 261
 Strain-Induced Optical Birefringence 261, Penetrant Techniques 261, Photoacoustic Microscopy 262, Infrared Microscopy 262, Acoustic Emission 262, Shearography 263, Lattice Distortion 263
- 13.5 Summary 264

APPENDIX: TECHNIQUE SUMMARIES

- 1 Auger Electron Spectroscopy (AES) 269
- 2 Electron Energy-Loss Spectroscopy in the Transmission Electron Microscope (EELS) 270
- 3 Electron Probe X-Ray Microanalysis (EPMA) 271
- 4 Energy-Dispersive X-Ray Spectroscopy (EDS) 272
- 5 Fourier Transform Infrared Spectroscopy (FTIR) 273
- 6 Light Microscopy 274
- 7 Neutron Diffraction 275

8	Physical and Chemical Adsorption for the Measurement of Solid State Areas 276
9	Raman Spectroscopy 277
10	Rutherford Backscattering Spectrometry (RBS) 278
11	Scanning Electron Microscopy (SEM) 279
12	Scanning Transmission Electron Microscopy (STEM) 280
13	Scanning Tunneling Microscopy and Scanning Force Microscopy (STM and SFM) 281
14	Solid State Nuclear Magnetic Resonance (NMR) 282
15	Surface Roughness: Measurement, Formation by Sputtering, Impact on Depth Profiling 283
16	Transmission Electron Microscopy (TEM) 284
17	Variable-Angle Spectroscopic Ellipsometry (VASE) 285
18	X-Ray Diffraction (XRD) 286
19	X-Ray Fluorescence (XRF) 287
20	X-Ray Photoelectron Spectroscopy (XPS) 288

Index 289