CONTENTS

Page

I.	INTRODUCTION TO THE SCIENCE OF CORROSION OF METALS	1	
	A. Definition of the science of corrosion and the corrosion protection of metal		
	B. Practical examples of the battle against corrosion of metals	3	
	C. Magnitude of corrosion and corrosion damage	5	
	D. Development stages in the science of metal corrosion	6	
	E. The thermodynamics and kinetics of corrosion processes	8	
	F. Classification of corrosion	11	
	G. Fundamental data on the structure of solid bodies	14	
	H. Fundamental data on electrolytes	21	
	PART ONE		
	Chemical Corrosion of Metals	•	
II.	METALLIC FILMS	29	
	A. Experimental data	29	
	B. Methods of investigation of protective films	31	
III.	THERMODYNAMICS AND KINETICS OF CHEMICAL OXIDATION OF		
	METALS	42	
	A. Thermodynamic feasibility of metal oxidation processes	42	
	B. Conditions for film continuity	43	
	C. Linear low of film growth	45	
	D. Parabolic low of film growth	48	
	E. The more complex low for the initial periods of film growth	51	
	F. Logarithmic low of film growth	53	
	G. Common oxidation curve of metals	55	
	H. Temperature dependence of metal oxidation	57	
IV.	THE MECHANISM OF CHEMICAL OXIDATION OF METALS	62	
	A. Zone of film growth in oxidation of metals	62	
	B. Mechanism of diffusion in the protective film	64	
	C. Mechanism of electrical conductivity in ionic crystals	69	
	D. The ion-electron theory of metal oxidation	73	
	E. Structure and properties of different oxide layers on metals	80	
	F. Orientational correspondence in the structure of a metal and its film	87	
	G. Texture of scale	92	
	H. Mechanical destruction of oxide films during the process of growth	93	
	I. Theory of high-temperature alloying	97	
V.	GASEOUS CORROSION	107	
	A. Oxidation of pure metals at high temperatures	107	
	B. Effect of various factors on gaseous corrosion	109	
	C. Some special cases of gaseous corrosion of metals	115	
	D. Protection of metals from gaseous corrosion	119	
	PART TWO		
	Electrochemical Corrosion of Metals		
VI.	ELECTRODE POTENTIALS OF METALS AND THE		
	ELECTROCHEMICAL MECHANISM OF METAL CORROSION	133	
	A. The phenomenon of electrochemical corrosion	133	

B. The electrochemical mechanism of corrosion 134

		Potentials at metal surfaces	135
		Seats of emf in a galvanic cell	137
		Electrochemical (electrode) potentials	140
		Equilibrium and nonequilibrium electrode potentials	140
	G.	Equilibrium potentials of metals (Type 1) and their corollary	
		static corrosion potentials	142
	H.		146
	I.	Oxidation-reduction potentials and their corollary corrosion potentials	147
	J.	Equilibrium potentials of gas electrodes and their corollary	
		corrosion potentials	148
		Operation of a galvanic corrosion cell	151
	L.	¥ 1	153
		Electrochemical heterogeneity of the corroding surface	154
	N.	Chemical, homogeneous-electrochemical, and heterogeneous	
		electrochemical mechanisms of corrosion	159
VII.	ĸī	NETICS OF ELECTRODE PROCESSES AND THE OPERATION OF	
V 11.		E GALVANIC CORROSION CELL	165
		Polarization and depolarization	165
		Polarization curves	166
		Anodic polarization	167
		Cathodic polarization	169
		Hydrogen depolarization	171
		Oxygen depolarization	176
		Effect of hydrogen depolarization on oxygen depolarization	183
		Characteristics of corrosion cells and the corrosion process in the presence of	
	11.	oxygen depolarization	184
	I.	Mathematical analysis of the operation of a galvanic corrosion cell	187
	J.	Graphical analysis of the operation of a corrosion cell	190
	K.		193
	L.	Nature of controlling factors in different cases of corrosion	197
		-	
VIII.		TENTIALS OF BINARY GALVNIC SYSTEMS	
		ID METAL ALLOYS	205
		Potentials of equilibrium binary galvanic systems	205
		Potentials of nonequilibrium binary systems with unpolarized electrodes	206
	C.	Potentials of nonequilibrium, short-circuited (polarized) binary systems	211
	D.	Potentials of solid solutions	218
	E.	Potential of a complex electrode of the film-pore type	223
IX.	DO	DARIZATION CURVES AND THE PROBLEM OF MULTIELECTRO	NDE
1.		STEMS	228
		Real (experimental) polarization curves	228
	В.	Methods of constructing ideal polarization curves	230
		Determination of the corrosion rate and corrosion potential by experimental	
	С.	polarization curves	231
	D	Problem of the multielectrode cell in corrosion	233
	Б. Е.	Fully polarized multielectrode systems	236
	F.	Multielectrode systems with considerable ohmic resistance in the circuit	242
X.	EF	FECT OF EXTERNAL POLARIZATION ON THE INTERNAL (LOCA	AL)
	CC	DRROSION CURRENT	249
		The difference effect	250
	В.	Cathodic protection of metals	255
	C.	1	256
	D.	Comparison of the phenomena of the positive difference	
		and protective effects	260
	E.	Some practical conclusions from the theory of cathodic protection	261
	F.	The negative difference effect	264
	G.	The negative protective effect	267

XI.	INTERNAL CORROSION FACTORS	271
	A. Thermodynamic stability of metals	271
	B. The periodic system of the elements and the corrosion properties of metals	272
	C. Stability limit of solid solutions	273
	D. Influence of structure and surface state of an alloy	277
	E. Influence of the mechanical factor on the corrosion process	279
XII.	EXTERNAL CORROSION FACTORS	296
	A. Influence of hydrogen ion concentration (pH)	296
	B. Corrosion inhibitors	301
	C. Corrosion accelerators	310
	D. Influence of salt concentration in solution	311
	E. Influence of velocity of the corrosion medium	312
	F. Effect of temperature	313
	G. Function of the ohmic factor in corrosion	317
XIII.	PASSIVITY OF METALS	325
	A. Manifestation of passivity	325
	B. Definition of passivity	328
	C. Quantitative calculation of the degree of passivity of a corroding metal	330
	D. Film theory of passivity	333
	E. Adsorption theory of passivity	336
	F. Some other theories of passivity	338
	G. Anodic passivity	341
	H. Mechanism of achieving and maintaining the passive state	345
	I. Operating characteristics of a corrosion cell under conditions	
	conductive to passivity	349
	J. Phenomenon of transpassivity	353
	K. Anodic protection	356
	L. Protective electrochemical action of discontinuous cathodic coatings	359
	PART THREE	
	Corrosion of Metals Under Various Conditions	
XIV.	ATMOSPHERIC CORROSION OF METALS	367
	A Classification of atmospheric correction	267

111 ()			001
	А.	Classification of atmospheric corrosion	367
	В.	Mechanism of atmospheric corrosion	369
	C.	Condensation of moisture on corrosion metal surfaces	370
	D.	Simulation of atmospheric corrosion processes	375
	E.	Factors determining rates of atmospheric corrosion	379
	F.	Controlling factors in atmospheric corrosion	383
	G.	Corrosivity of various atmospheres	389
	H.	Protective properties of the corrosion products	392
	I.	Increasing the resistance of alloys to atmospheric corrosion	394
	J.	Methods for combating atmospheric corrosion	395
XV.	UN	DERGROUND CORROSION OF METALS	399
	А.	Soil as a corrosive electrolyte	400
	В.	The anodic process	402
	C.	The cathodic process	411
	D.	The nature of soil corrosion control	419
	E.	Characteristics of corrosion couples in soil corrosion	422
	F.	Corrosive activity of soils	428
	G.	Role of micro- and macrocorrosion couples in evaluating soil corrosivity	432
	H.	Effect of microorganisms on the corrosion of metals in the soil	435
	I.	Soil corrosion by stray currents	438
	J.	Corrosion of various metals and alloys in the soil	439

	K.	Some conclusions from the theory of soil corrosion	447
XVI.	CC	DRROSION OF METALS IN SEA WATER	454
	А.	Sea water as a corrosive electrolyte	455
	В.	Basic characteristics of electrochemical processes in marine corrosion	458
		The geographic factor	459
		Influence of the biological factor	461
		Effect of sea water velocity on the corrosion process	465
		Contact corrosion	468
		Effect of the nature of contact of the metal with sea water	470
		Effect of differential aeration	471
		Behavior of various metals in sea water	474
	J.	Principal trends in the battle against marine corrosion	477
		PART FOUR	
XVII.	CC	Corrosion Resistance of Metals and Alloys MBATING CORROSION OF METALS BY ALLOYING	485
	A.		485
		General corrosion properties of pure metals	486
		Effect of structural heterogeneity on corrosion of alloys	489
		Theory of corrosion-resistant alloying and ways of increasing corrosion	
		resistance of metals and alloys	494
	E.	Classification of corrosion-resistant alloys	499
XVIII.	co	DRROSION CHARACTERISTICS OF IRON	502
	A.	Significance of iron and its alloys in modern technology	502
	В.	Corrosion and electrochemical properties of iron	503
	C.	Corrosion of iron in different electrolytes	507
	D.	Effect of metallurgical factors on the corrosion of iron and steel	514
XIX.	IR	ON-BASE CORROSION-RESISTANT ALLOYS	523
	А.	Classification and principal alloying components	523
	В.	Alloys of the iron-chromium system	536
	C.	Chromium steels of different classes	543
		Chromium-nickel (austenitic) steels	557
		Corrosion characteristics of chromium-nickel steels	566
		Additionally alloyed chromium-nickel steels	582
	G.	Corrosion-resistant cast irons	588
XX.	NC	ONFERROUS CORROSION-RESISTANT METALS AND ALLOYS	597
	A.		597
	В.	Nickel, cobalt, and their alloys	604
	C.	Aluminum	612
		Magnesium and beryllium	622
		Lead	628
	F.		631
		Zinc and cadmium	632
		Chromium, molybdenum, tungsten, and manganese	634
	I.	Titanium, zirconium, tantalum, columbium, germanium, and silicon	639
	J.	Noble metals	648
CONC	LUS	ION	655