Contents

Preface		v
1 Int	troduction to Polymer Rheology	1
1.	Rheology	1
II.	Material Functions in Viscometric Flows	2
III.	Extensional Flow	7
IV.	The Stress Tensor	8
V.	The Rate of Strain Tensor	11
	References	12
2 Ins	struments for Shear Rheology	13
I.	Introduction	13
II.	Capillary Viscometers	14
III.	Coaxial Cylinder Viscometers	20
IV.	Cone-and-Plate Viscometers	22
V.	Parallel-Plate Viscometers	24
VI.	Sliding-Plate Viscometers	26
VII.	Other Viscometers	28
	References	32

3 Sł	near Viscosity of Melts of Flexible Chain Polymers	34
I.	Introduction	34
II.	Zero-Shear Viscosity	37
III.	Shear Rate–Dependent Viscosity	51
IV.	Concluding Remarks	58
	References	59
4 Sł	near Viscosity of Polymer Solutions	63
I.	Introduction	63
II.	Intrinsic Viscosity—The Limit of Infinite Dilution	65
III.	Zero-Shear Viscosity as a Function of Molecular Weight and	
	Concentration	68
IV.	Influence of Structural Factors, Temperature, and Pressure on	
	the Zero-Shear Viscosity	73
V.	Shear Rate-Dependent Viscosity	76
VI.	Viscosity of Polyelectrolytes	77
VII.	Surfactant Solutions and Associative Thickeners	80
	References	86
5 N	ormal Stress Differences in Polymers During Shear Flow	89
I.	Introduction	89
II.	Low-Shear-Rate Behavior of the First Normal Stress	
	Difference	96
III.	Measurement of N_1 at High Shear Rates	103
IV.	Measurement of the Second Normal Stress Difference	109
V.	Concluding Remarks	112
	References	113
6 D	ynamic Mechanical Properties	117
I.	Introduction	117
II.	Dependence of Polymer Melt Dynamic Mechanical	
	Properties on Temperature, Molecular Weight, and Polymer	
	Structure	121
III.	Boltzmann Superposition Principle	125
IV.	Stress Relaxation Modulus	125
V.	Dynamic Rheological Properties of Solutions	131
VI.	Relevance to Nonlinear Viscoelasticity	135
VII.	Concluding Remarks	137
	References	138

x

Contents	
----------	--

7	Extensional Viscosity	140
1	I. Introduction	140
I	I. Low-Stretch-Rate Behavior of Extensional Viscosity	143
II	I. Extensional Viscosity at High Stretch Rates	155
IV	7. Concluding Remarks	164
	References	165
8	Rigid-Rod and Liquid-Crystal Polymer Rheology	170
]	I. Introduction	170
I	I. Viscosity Behavior in the Isotropic State	175
II	I. Constant-Shear-Rate Behavior in the Nematic	
	State	181
IV		190
V	7. Polydomains and Transient Flow	192
	References	194
9	Yield Stress, Wall Slip, Particle Migration, and Other	
	Observations with Multiphase Systems	197
	I. Introduction	197
L	I. Unstable Suspensions	200
	I. Yield Stress Measurement	204
IV	1 2	210
V	7. Migration of Particles Across Streamlines	217
V	I. Concluding Remarks	220
	References	220
10	Solid-in-Liquid Suspensions	224
	I. Introduction	224
Ι	I. Shear Viscosity of Concentrated Suspensions of	
	Noncolloidal Particulates	226
II	I. Shear Viscosity of Colloidal Hard Spheres	235
I۱	7. Shear Thickening in Colloidal Hard Sphere Suspensions	239
\	V. Elastic Effects	241
V	I. Flocculated Suspensions	246
VI	I. Electrorheology	259
VII	I. Concluding Remarks	261
	References	262
11	Short-Fiber Suspensions	266
	I. Introduction	266
	I. Dilute Fiber Suspensions	268

xi

Contents

III.	Semiconcentrated Fiber Suspensions	271
IV.	Concentrated Fiber Suspensions	275
V.	Concluding Remarks	280
	References	281
12 I	Emulsions	284
I.	Introduction	284
II.	Viscosity of a Dilute Emulsion of Spherical	
	Droplets	287
III.	Drop Deformation and Breakup	288
IV.	Elasticity of Dilute Emulsions	291
V.	Droplet Coalescence During Shear Flow	292
VI.	Rheology of Concentrated Emulsions	294
VII.	Concluding Remarks	299
	References	300
13	Gas-Containing Melts and Foams	304
I.	Introduction	304
II.	Viscosity of Gas-Containing Polymers	305
III.	Yielding of Foam	308
IV.	Foam Viscosity	311
V.	Concluding Remarks	314
	References	314
14 I	Rheology of Powders and Granular Materials	316
I.	Introduction	316
II.	Instruments	317
III.	Flow Behavior of Particulate Solids	320
IV.	Concluding Remarks	330
	References	330
15 (Chemorheology and Gelation	332
I.	Introduction	332
I. II.	Thermal Characterization of Curing Reactions	332
II. III.	Mechanistic Models of Curing	339
IV.		340
V.	Polymer Gelation	340
VI.	Polymer Vitrification	348
	References	349
		517

Contents		xiii
16 H	Flow Through Porous Media	352
I.	Introduction	352
II.	Dimensional Considerations	354
III.	Capillary Model	355
IV.	Effect of a Shear-Thinning Viscosity	358
V.	Permeability Measurement	360
VI.	Fibrous Porous Media	362
VII.	Pore Geometry Effects	365
VIII.	Viscoelastic Effects	367
IX.	Concluding Remarks	371
	References	371
17 N	Melt Fracture	375
I.	Introduction	375
II.	Historical Perspective	376
III.	Tying Melt Fracture to Wall Slip	379
IV.	Adhesion Promotion or Slip Promotion?	383
V.	Concluding Remarks	383
	References	383
Index		387

Index