CONTENTS

Page

59

PART 1 RAW MATERIALS-FIBER PRODUCTION AND DEVELOPMENTS

IMPACT OF CARBON FIBERS ON FRP TECHNOLOGY	2
Introduction	2
Fibers and Resins	3
Processing and Fabrication Technology	4
Application Development	5
Concluding Remarks	9
Acknowledgements	9
MANUFACTURING ADVANCES TOWARDS HIGH STRAIN FIBERS	14
Introduction	14
Required Properties for Aircraft Structures	14
Factors Which Determine Fiber Strength and Modulus	15
Development of Fiber with High Strength and High Modulus	15
Properties of Fibers and Their Composites	16
Summary	17
References	18
HIGH PERFORMANCE FIBERS: THE DEVELOPMENT OF IMPROVED	
PROPERTIES IN THE HYSOL-GRAFIL RANGE OF PRODUCTS	29
Introduction	29
Internal Defects	30
Crystal Structure/Morphology Optimization	31
References	33
A COMPARISON OF AVAILABLE CARBON FIBERS	39
Introduction	39
Tabulated Data	40
Discussion	41
Conclusions	41
PROPERTY TESTING AND ASSESSMENT OF CFRP	48
PART 2	
INTERMEDIATE MATERIALS CONVERSION AND PROCESSING	
WOVEN CFRP FABRICS	50
UD Tapes	51
Conventional Fabrics	51
Comparison Between Tape and Fabric	53
Conclusions	54
PAPERS-A NEW DIMENSION IN CARBON FIBER MATERIALS	55
Introduction	55
Processing	56
Uses of Carbon Fiber Papers	57
Antistatic FRPs Using Carbon Fiber Papers	57
EMI/RFI Shielding	57
Resistive Heating	58

Chemical Resistance

Structural Applications	59
Conclusions	60
Acknowledgements	60 60
Kelelences	00
METAL COATED GRAPHITE FIBERS FOR CONDUCTIVE COMPOSITERS	64
Introduction	64
NCG Fiber Applications	65
Conclusion	69
CFRP MOULDING COMPOUNDS	71
PROGRESS AND PROSPECTS IN CFRTP'S	72
Introduction	72
Key Points of Recent Trends	72
The Present State of the Art	73
Future Trends References	75 76
References	70
CRYSTALLIZATION STUDIES OF THERMOPLASTIC COMPOSITES	
BY DYNAMIC MECHANICAL ANALYSIS	86
Introduction	86
Experimental Description of DEFIX	87
Properties of PEEK	8/
Isothermal Crystallization Studies	00 99
ΔPC_2 Versus ΔPC_1	00 89
Conclusions	90
References	90
DA DT 2	
DESIGN AND FABRICATION INTEGRATION	
MAJOR CFRP CIVIL AIRCRAFT COMPONENTS	102
COMPONENT DEVELOPMENT FOR HELICOPTER STRUCTURES	103
MATRIX SYSTEMS FOR HIGH PERFORMANCE AIRFRAME	
STRUCTURES	104
PARTS INTEGRATION-ADVANTAGES AND PROBLEMS	105
Introduction	105
Discussion	106
Effect of Design on Repairability	108
Conclusions	110
DEVELOPMENT AND CERTIFICATION OF AN AIRCRAFT	
PASSENGER SEAT	111
CARBON FIBER COIL SPRINGS	112
THE USE OF COMPOSITE MATERIALS IN RACING CAR DESIGN	113
Introduction	113
A Brief History of Composites in Racing	113
Chassis Design Criteria	115
How composites Satisfy the Design Criteria	115
Conclusion	117

THE PROSPECTS FOR CARBON FIBER-AN INVESTOR'S

PERSPECTIVE	121
Risks	122
Growth Prospects	123
Opportunities Profitability	124
Tomaonity	125
SPORTS/LEISURE-MARKET OPPORTUNITIES	126
Abstract	126
Manufacturing Techniques and Product Features of Cross	120
Market Opportunities I	130
Market Opportunities II	133
CARBON FIBER APPLICATIONS IN MARINE ENVIRONMENTS	136
DESIGN AND FABRICATION OF TWO SOPHISTICATED HAND	
LAYED-UP CARBON FIBER COMPOSITE PRODUCTS	137
Composites in Advanced Aircraft Structure	137
INTERRLEAF TECHNOLOGY FOR CARBON COMPOSITE	
AIRCRAFT PRIMARY STRUCTURE	146
Introduction	146
The Interleaf Concept	146
Test Methods	14/
Veight Saving of CVCOM [®] HST-7 over 2024-T3 Aluminum	140
Interleaf Strain Accommodation	148
Conclusions	148
Reference	149
Biography	149
CARBON FIBER-USES AND PROSPECTS	158
Background	158
Design and Development	159
Test Programme	161
Production Quality Assurance	101
The Future	162
PART 4	
PERFORMANCE VERSUS PROPERTIES	
COMPETITIVE MATERIALS-PROBLEMS OR SOLUTIONS	166
Materials in Question	166
Materials in Competition	168
Materials in Collaboration	172
A cknowledgements	174
Acknowledgements	1/4
CARBON/CARBON DEVELOPMENTS FOR AIRCRAFT BRAKES	175
CARBON FIBER COMPOSITE RECIPROCATING GUIDE BAR	176
Introduction Design of Composite Per	176
Fabrication	1/0 178
Operating Trials	170
Cost	179
Further Developments	180
Epilogue	180
Conclusions	180

Acknowledgements	180
ARAMID FIBERS FOR ADVANCED COMPOSITES FROM	
RECREATIONAL TO MILITARY APPLICATIONS	183
Introduction	183
Development of properties of Aramid Fibers and Carbon Fibers	184
Properties of Twaron HM Aramid Fiber	186
Applications of TWARON Aramid Fiber	192
Summary	198
References	199
HIGH MODULUS FIBERS AND THEIR COMPOSITES	200
Introduction	200
Ultra High Modulus Polyethylene Fibers	200
UHMPE Fiber Composites	202
Conclusion	205
Acknowledgement	205
References	205
HYBRID SYSTEMS-BEST OF BOTH WORLDS?	208
Introduction	208
Hybrid Reinforcement Systems	209
Designing Composite Properties	209
Beyond the Mechanics	215
References	216