620.1 BAN 2nd ed

CONTENTS

Preface to Second Edition		(iii)•
Preface to First Edition	•••	(iv)
Conversion factors	•••	(v)
Equivalent weight	•••	(vii) [,]
Atomic Weights	•••	(viii) [,]

CHAPTER-I

FUELS AND COMBUSTION

1.1.	Proximate analysis of coal	•••	2
1.2.	Ultimate analysis of coal	•••	7
1 [.] 3.	To determine the amount of sulphur in coal (By Eschka mixture method)	•••	27 ⁻
1.4.	To determine the calorific values of solid and		
	liquid fuels (By Oxygen-Bomb calorimeter)		30 -
1.5.	To determine the calorific value of a gaseous fuel		
•	(By Hugo Junker's gas calorimeter)	•••	52 :
1.6.	To analyse a flue gas (By simple orsat apparatus)	•••	65

CHAPTER-II

INDUSTRIAL WATER

2 [.] 1.	To determine the amount of NaOH and Na ₂ CO ₃ in a given alkaline solution	•••	82:
2 .2	To determine the amount of Na_2CO_3 and $NaHCO_3$ in a given alkaline solution		85
· 7.2		•••	0.0
23.	to determine the alklinity of water	•••	87
2.4.	To determine the temporary hardness of boiler feed water		9 4 .
2.5.	To determine the permanent hardness of hailan		24
	feed water		
	Iccu water	•••	96-

2 [.] 6.	To determine the carbonate and non-carbonate hardness of boiler feed water (By soda-reagent method)	••••	98
2 .7.	To determine the temporary and permanent hardness of boiler feed water (By standard soap solution method)	•••	122
2.8.	To determine the temporary and permanent hard- ness of boiler feed water (By E.D.T.A. method)		1 2 6
2.9 . v	To determine the magnessium hardness of boiler feed water		128
2.10.	To determine the amount of dissolved oxygen in		
	boiler feed water	•••	132
2 11.	To determine the amount of total chloride in boiler feed water.		134
2.12.	To determine the amount of free chlorine in municipal water		137
2.13.	To determine the amount of total sulphate in boiler feed water (By Benzidine hydrochloride		
	method)	•••	140
2.14	To determine the amount of total solids in boiler feed water		143
	CHAPTER-III		
OIL	S AND LUBRICANTS		
. 3 .1.	To find out the acid value of a vegetable oil		145
3.2.	To find out the saponification value of an oil	•••	149
3.3.	To find out the iodine value of an oil		152
3 [.] 4.	To determine the flash point of a high fuel oil (By Abel's apparatus)		157
3.5.	To determine the flash point of a lubricating oil		
0.0	(By Pensky-Martein's apparatus)	•••	159
3.0,	To determine the viscosity of an oil (By Redwood Viscosmeter)		161
3.7.	To determine the Reid vapour pressure of petrol	····	166
		• •	

.

(x)

(xi)

CHAPTER-IV

METALS AND ALLOYS

4.1	To estimate the amount of iron in haematite ore	•••	170
4 '2.	To estimate the amount of iron in steel	•••	174
4.3.	To estimate the amount of copper in brass	•••	177
4 •4.	To estimate the amount of silver in an alloy of coper and silver	•••	180
4 °5.	To estimate the amount of available oxygen and manganese dioxide in pyrolusite ore	•••	183
4 °6.	To estimate the amount of calcium carbonate in lime stone	•••	186
4 [.] 7.	Corrosion of metals and alloys	•••	189
	Laboratory Reagents	•••	1 92
	CHAPTER—V		

PORTLAND CEMENT

1

5.1.	Analysis of portland cement		197
	Logarithms	***	209
	Antilogarithms	•••	211