CONTENTS

CU 1 1 1 1 1 1 1	Preface		PAGE 111
I.	The G	eneral Principles of Dynamics	1
	1.1.	The Laws of Motion	1
	1.2.	Definitions	2
	1.3. 1.4.	Frames of Reference Fundamental and Derived Units	4 5
	1.5.	Dimensions	6
	1.6. 1.7.	Dimensional Homogeneity Dimensional Analysis	9 10
	1.8.	The Theory of Models	17
H.	Kinema	atics: The Description of Motion	26
	2.1.	Displacement, Velocity, and Acceleration	26
	2.2.	Angular Velocity	34
	2.3.	Motion Referred to a Moving Coordinate	
		System	38
III.	Dynam	IICS OF A P ARTICLE	48
2	3.1.	Integration of the Equation of Motion for	
		Particular Problems	49
	3.2.	The Equation of Impulse and Momentum	53
	3.3.	The Equation of Work and Energy	58
	3.4.	Potential	63
	3.5.	Potential Energy	64
	3.6.	The Conservation of Energy	65
	3.7.	The Solution of Problems in Dynamics	68
IV.	Applic	ations of Particle Dynamics	75
	4.1.	The Motion of a Body Falling Through a Resisting Medium	75
		V	

:

CONTENTS

CHAPTER

AF I LA			PAGE
	4.2.	Projectile Motion	78
	4.3.	Planetary Motion	84
	4.4.	Impact	88
	4.5.	The Scattering of Particles	95
	4.6.	The Pressure in a Gas	98
	4.7.	Variable Mass Systems	103
	4.8.	Jet Propulsion Problems	103
	4.9.	Electron 'Dynamics	107
	4.1 0.	The Acceleration of Electrons	109
	4.11.	The Cathode-Ray Oscilloscope	111
	4.12.	The Equivalence of Mass and Energy	113
V.	DYNAM	ICS OF VIBRATING SYSTEMS	118
	5.1.	The Vibration Problem	118
	5.2.	The Characteristics of the Forces	119
	5.3.	The Differential Equation of the Vibration	
		Problem	122
\mathbf{r}	5.4.	Free Vibrations of an Undamped System	122
	5.5.	Damped Vibrations	130
	5.6.	Forced Vibrations	135
	5.7.	Vibration Isolation	145
	5.8.	The Design of Vibration Measuring	
		Instruments	149
	5.9.	Vibrations with Non-periodic Forces	153
	5.1 0.	Oscillations in Electric Circuits	159
VI.	PRINCIP	ples of Dynamics for Systems of	
	Partici	LES	164
	6.1.	The Equation of Motion for a System of	μ.
c		Particles	164
	6.2.	The Motion of the Center of Mass	165
	6.3.	The Total Kinetic Energy of a System of	2
		Particles	166
	6.4.	Moment of Momentum	171
	6.5.	Summary	174
II.	THE D	YNAMICS OF RIGID BODIES	178
	7.1. ,	Kinematics of Rigid Body Motion	178
	7.2.	The Moment of Momentum of a Rigid Body	186
		• •	

vi

CONTENTS

CHAPTER			PAGE
2	7.3.	Moments and Products of Inertia	188
	7.4.	The Calculation of Moments and Products of	
£ . £		Inertia	189
	7.5.	Translation of Coordinate Axes	191
	7.6.	Rotation of Coordinate Axes	192
	7.7.	Principal Axes	196
	7.8.	The General Equations of Motion for a Rigid	
		Body	202
	7.9.	Equations of Motion for a Translating Body	207
	7.10.	The Rotation of a Rigid Body About a	
		Fixed Axis	212
	7.11.	Plane Motion of a Rigid Body	227
	7.12.	,Rotation About a Fixed Point	235
	7.13.	The Symmetrical Top and the Gyroscope	238
	7.14.	The Gyroscopic Compass	245
12	7.15.	General Motion in Space. Rolling of a Disk	248
	7.16.	Stability of Rigid Body Motion. The Rolling.	n Karal I
		Disk	250
	7.17.	D'Alembert's Principle	253
VIII. N	Non-R	IGID SYSTEMS OF PARTICLES	262
	8.1.	Longitudinal Waves in an Elastic Bar	262
	8.2.	The Traveling Wave Solution	264
a 13	8.3.	The Longitudinal Vibrations of a Bar	268
	8.4.	The Equations of Motion of a Non-viscous	
		Fluid	272
	8.5.	The Energy Equation	274
7	8.6.	Bernoulli's Equation by Euler's Method	275
	8.7.	The Momentum Equation	279
	8.8.	The Momentum Equation for an Accelerating	
	3	Volume	287
IX. A	DVANC	ED METHODS IN DYNAMICS	293
×.	9.1.	Generalized Coordinates	293
	9.2.	Lagrange's Equations for a Particle	295
đ	9.3.	Lagrange's Equations for a System of	
		Particles	303
•	9.4.	Oscillations of Two Degree of Freedom	
		Systems	308
34T		(2015) (1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	

Coc

ŝ

vii

CONTENTS

PAG

CHAPTER

9	9.5.	Principal Modes of Vibration	313
9	9.6.	Small Oscillations of a Conservative System	319
9	9.7.	The Potential Energy Function	320
9	.8.	The Kinetic Energy Function	321
9	9.9.	The General Equations of Free Oscillations	323
9	.10.	Orthogonality of the Principal Modes	326
· 9	.11.	Example: The Calculation of Natural	
		Frequencies and Mode Shapes	327
. 9	.12.	Forced Oscillations	332
9	.13.	The Calculus of Variations	337
9.	.1 4.	Euler's Differential Equation	339
9	.15.	Hamilton's Principle	347
9	.16.	Hamilton's Canonical Equations of Motion	352
APPENDIX 2	I.	BIBLIOGRAPHY	355
]	[I.	Units of Mass and Force	357
]	III.	VECTOR Products	359
. I	[V.	PROPERTIES OF PLANE SECTIONS	361
		Properties of Homogeneous Bodies	367
Answers to	PR	OBLEMS	373
INDEX		a set of the set	385

viii