CONTENTS

Chapter	1	VECTORS	Page 1
Chapter	2	OPERATIONS WITH FORCES Moment of a force. Moment of a couple. Replacement of a force by a force and couple. Operations with coplanar force systems.	14
Chapter	3	RESULTANTS OF COPLANAR FORCE SYSTEMS Coplanar forces. Concurrent system. Parallel system. Non-concurrent, non-parallel system. Graphical solutions.	23
Chapter	4	RESULTANTS OF SPATIAL FORCE SYSTEMS Spatial forces. Definition of resultant. Concurrent system. Parallel system. Non-concurrent, non-parallel system.	33
Chapter	5	EQUILIBRIUM OF COPLANAR FORCE SYSTEMS Vector equations of equilibrium. Scalar equations for concurrent system. Scalar equations for parallel system. Scalar equations for general sys- tem. Graphical conditions for equilibrium. Suggestions for solving problems.	40
Chapter	6	TRUSSES AND CABLES	57
Chapter	7	EQUILIBRIUM OF SPATIAL FORCE SYSTEMS	73

CONTENTS

	Chapter Chapter	8	FRICTION General concepts and definitions. Laws of friction. Jack-screw. Belt friction. Brake bands. Rolling resistance. FIRST MOMENTS AND CENTROIDS. Vector definition of centroid of an assemblage. Centroid of a continuous quantity. First moments and units. Theorems of Pappus and Guldinus. Center of pressure.	Page 84
	Chapter	10	KINEMATICS .OF A PARTICLE. Definition. Position, velocity and acceleration in rectilinear motion. Simple harmonic motion. Curvilinear motion. Cartesian or rectangular components. Tangential and normal components. Radial and transverse components (polar coordinates). Units.	123
	Chapter	11	DYNAMICS OF A PARTICLE. Newton's laws of motion. Units. Acceleration. Discussion of types of dynamics problem.	148
	Chapter	12	KINEMATICS OF A RIGID BODY IN PLANE MOTION Definition. Position vector, velocity and acceleration of any point of rigid body in plane motion. Special cases – translation and rotation. Instantaneous axis of rotation. Coriolis' law and its proof.	170
	Chapter	13	DYNAMICS OF A RIGID BODY IN TRANSLATION Effective force on a particle. D'Alembert's principle. Scalar equations for translation. Inertia-force method.	198
	Chapter	14	AREA MOMENTS OF INERTIA Axial moment of inertia of element of area. Polar moment of inertia of element of area. Product of inertia of element of area. Axial moment of inertia of area. Polar moment of inertia of area. Product of inertia of area. Parallel axis theorem. Axial moments, polar moments and products of inertia of composite areas. Moments of inertia of area with respect to a rotated set of axes. Mohr's circle.	209
	Chapter	15	MASS MOMENTS OF INERTIA	224

Chapter	16	DYNAMICS OF A RIGID BODY IN ROTATION Equations of motion for any fixed axis. Equations of motion for rotation about an axis of symmetry. Inertia-force method. Center of percussion.	Page 232
Chapter	17	DYNAMICS OF A RIGID BODY IN PLANE MOTION Equations of motion relative to mass center. Note on use of other points as moment centers.	248
Chapter	18	WORK AND ENERGY Definition of work. Power. Efficiency. Kinetic energy. Work-energy relations for a particle. Kinetic energy of a body in translation, rotation and plane motion. Potential energy. Law of conservation of energy.	264
Chapter	19	IMPULSE AND MOMENTUM Linear momentum of particle. Linear impulse. Linear impulse – linear momentum relations for a particle and an assemblage of particles. Moment of momentum (angular momentum). Moment of relative momen- tum. Scalar equations in translation, rotation and plane motion. Con- servation of linear momentum. Conservation of angular momentum. Impact. Variable mass.	285
Chapter	20	MECHANICAL VIBRATIONS Definitions. Degrees of freedom. Simple harmonic motion. Linear free vibrations. Angular free vibrations. Free vibrations with viscous damp- ing. Forced vibrations without damping. Forced vibrations with damp- ing. Critical speeds of shafts. Vibration measuring instruments.	312
Chapter	21	 SPECIAL TOPICS: BEAMS AND VIRTUAL WORK. Part A. Types of beams. Shear and moment in beams. Sign convention. Determination of shear and moment. Shear and moment diagrams and information obtained from them. Part B. Virtual displacement of a particle. Virtual work. Conditions for equilibrium of a particle, a rigid body and a system. Stable equilibrium. Unstable equilibrium. Neutral equilibrium. Determination of type of equilibrium. 	335

INDEX .

351

.