CONTENTS

		Page
1.	Sampling powders	1
1.1	Introduction	1
1.2	Theory	1
13	Golden rules of sampling	5
14	Bulk sampling	5
1.5	Slurry sampling	20
1.5	Sample dividing	20
1.0	Miscellaneous devices	22
1.7	Reduction from laboratory sample to analysis sample	20
1.0	Reduction from analysis sample to massurement sample	30
1.7	Experimental tests of semple colliting techniques	22
1.10	Experimental tests of sample-splitting techniques	55
2.	Sampling of dusty gases in gas streams	36
2.1	Introduction	36
2.2	Basic procedures	39
2.3	Sampling equipment	41
2.4	Corrections for anisokinetic sampling	54
2.5	Probe orientation	59
2.6	Radiation methods	60
3	Sampling and sizing from the atmosphere	64
31	Introduction	64
2.1	Inertial techniques	68
2.2	Eiltration	08
5.5 2 4	Filiation	70
5.4 2.5	Electrostatic precipitation	/9
3.5	Electrical charging and mobility	81
3.0	Thermal precipitation	82
3.1	I ne quartz microbalance	86
3.8	Light scattering	86
3.9	Miscellaneous techniques	95
4.	Particle size, shape and distribution	103
4.1	Particle size	103
4.2	Particle shape	107
4.3	Determination of specific surface from size distribution data	121
4.4	Particle size distribution transformation between number, surface and mass	122
4.5	Average diameters	124
4.6	Particle dispersion	129
4.7	Methods of presenting size analysis data	130
4.8	Devices for representing the cumulative distribution as a straight line	133
49	The low of compensating errors	146
4 10	Alternative notation for frequency distribution	149
4 1 1	Phi-notation	156
4 12	Manipulation of the log-probability equation	150
4 13	Relationship between median and mode of a log-normal distribution	161
4.14	An improved equation and graph paper for log0normal evaluations	161
_	-	
5.	Steving	165
5.1	Introduction	165
5.2	woven-wire and punched plate sieves	166
5.3	Electroformed micromesh sieves	167
5.4	British Standard specification sieves	169

5.5	Method for the use of fine sieves	171
5.6	Sieving errors	178
5.7	Mathematical analysis of the sieving process	180
5.8	Calibration of sieves	183
6. I	Microscopy	187
6.1	Introduction	187
6.2	Optical microscopy	187
6.3	Particle size	188
6.4	Transmission electron microscopy (TEM)	192
6.5	Scanning electron microscopy (SEM)	196
6.6	Manual methods of sizing particles	197
6.7	Semi-automatic aids to microscopy	201
6.8	Automatic counting and sizing	207
6.9	Quantitative image analysers	208
6.10	Specimen improvement techniques	209
6.11	Statistical considerations governing the determination of size distributions	
	by microscope count	210
6.12	Conclusion	211
7. I	Interaction between particles and fluids in a gravitational field	215
7.1	Introduction	215
7.2	Relationship between drag coefficient and Reynolds number for sphere settling ir	n a
	liquid	216
7.3	The laminar flow region	217
7.4	Critical diameter for laminar flow settling	218
7.5	Particle acceleration	219
7.6	Errors due to the finite extent of the fluid	220
7.7	Errors due to discontinuity of the fluid	222
7.8	Brownian motion	223
7.9	Viscosity of a suspension	225
7 10	Calculation of terminal velocities in the transition region	225
7 1 1	The turbulent flow region	229
7.12	Non-rigid spheres	230
7.12	Non-spherical particles	230
7 14	Concentration effects	235
7 1 5	Hindered settling	233
7.15	Flectro-viscosity	240
/.10		213
8. 1	Dispersion of powders	246
8.1	Discussion	246
8.2	The use of glidants to improve flowability of dry powders	252
83	Density determination	252
8.4	Viscosity	256
8.5	Sedimentation systems	256
8.6	Densities and viscosities of some aqueous solutions	261
8.7	Standard powders	262
0.7		
9. I	Incremental methods of sedimentation size analysis	267
9.1	Basic theory	267
9.2	Resolution for incremental methods	269
9.3	The pipette method	270
9.4	The photosedimentation technique	276
9.5	X-ray sedimentation	283
9.6	Hydrometers	287
9.7	Divers	289
9.8	The specific gravity balance	291
9.9	Appendix : worked examples	291
10. (Cumulative methods for sedimentation size analysis	298

10.1	Introduction	298
10.2	Line-start methods	298
10.3	Homogeneous suspensions	299
10.4	Sedimentation balances	301
10.5	The granumeter	308
10.6	The micromerograph	308
10.7	Sedimentation columns	310
10.8	Manometric methods	314
10.9	Pressure on the walls of the sedimentation tube	315
10.10	Decanting	315
10.11	The β -back –scattering method	317
10.12	Discussion	318
10.13	Appendix : An approximate method of calculating size distribution from cumulative	ve
	sedimentation results	319
11. F	luid classification	325
11.1	Introduction	325
11.2	Assessment of classifier efficiency	325
11.3	Systems	331
11.4	Counterflow equilibrium classifiers in the gravitational field-elutriators	331
11.5	Cross-flow gravity classifiers	341
11.6	Counterflow equilibrium classifiers in the centrifugal field	343
11.7	Cross-flow equilibrium classifiers in the centrifugal field	344
11.8	Other commercially available classifiers	347
11.9	Hydrodynamic chromatography	347
12. C	Centrifugal methods	350
12.1	Introduction	350
12.2	Stokes' diameter determination	350
12.3	Line-start technique	351
12.4	Homogeneous suspension	359
12.5	Cumulative sedimentation theory for a homogeneous suspension	360
12.6	Variable-time method (variation of P with t)	361
12.7	Variable inner radius (variation of P with S)	362
12.8	Shape of centrifuge tubes	363
12.9	Alternative theory (variation of P with S)	364
12.10	Variable outer radius (variation of P with R)	365
12.11	Incremental analysis with a homogeneous suspension	365
12.12	The LADAL X-ray centrifuge	372
12.13	The LADAL pipette withdrawal centrifuge	377
12.14	The supercentrifuge	382
12.15	The ultracentrifuge	384
12.16	Conclusion	384
12.17	Appendix : Worked examples	386
13. T	he electrical sensing zone method of particle size distribution determination	
(the Coulter principle)	392
13.1	Introduction	392
13.2	Operation	392
13.3	Calibration	393
13.4	Evaluation of results	396
13.5	Theory	397
13.6	Effect of particle shape and orientation	400
13.7	Coincidence correction	401
13.8	Pulse shape	404
13.9	End-point determination	407
13.10	Upper size limit	408
13.11	Commercial equipment	408
13.12	Conclusions	411

14. R	adiation scattering methods for particle size determination	414
14.1	Introduction	414
14.2	Scattered radiation	418
14.3	State of polarization of the scattered radiation	420
14.4	Turbidity measurement	421
14.5	High-order Tyndall spectra (HOTS)	423
14.6	Particle size analysis by light diffraction	424
14.7	Light-scattering equipment	425
14.8	Holography	426
14.9	Miscellaneous	428
15. P	ermeametry and gas diffusion	432
15.1	Flow of a viscous fluid through a packed bed of powder	432
15.2	Alternative derivation of Kozeny's equation using equivalent capillaries	434
15.3	The aspect factor k	435
15.4	Other flow equations	436
15.5	Experimental applications	440
15.6	Preparation of powder bed	441
15.7	Constant-pressure permeameters	441
15.8	Constant-volume permeameters	445
15.9	Fine particles	448
15.10	Types of flow	449
15.11	Transitional region between viscous and molecular flow	449
15.12	Experimental techniques for determining Z	450
15.13	Calculation of permeability surface	451
15.14	Diffusional flow for surface area measurements	455
15.15	Non stoody state diffusional flow	454
15.10	Non-steady-state diffusional flow	433
15.17	The liquid phase normeemeter	437
15.10	Application to hindered sottling	400
13.19	Application to initialized setting	402
16. G	as adsorption	465
16.1	Introduction	465
16.2	Theories of adsorption	466
16.3	Experimental techniques – factors affecting adsorption	488
16.4	Experimental techniques – volumetric methods	490
16.5	Experimental techniques – gravimetric methods	494
16.6	Continuous-flow gas chromatographic methods	496
16.7	Standard volumetric gas-adsorption apparatus	502
16.8	Commercially available volumetric-and gravimetric-type apparatus	505
17. C	Other methods for determining surface area	514
17.1	Introduction	514
17.2	Calculation form size distribution data	515
17.3	Adsorption form solution	516
17.4	Methods of analysis of amount of solute adsorbed on to solid surfaces	519
17.5	Theory for adsorption from solution	521
17.6	Quantitative methods for adsorption from a solution	522
17.7	Theory for heat of adsorption from a liquid phase	526
17.8	Static calorimetry	529
17.9	Flow microcalorimetry	530
17.10	534	
18. D	Determination of pore size distribution by gas adsorption	538
18.1	Miscellaneous techniques	538
18.2	The Kelvin equation	538
18.3	The hysteresis loop	541
18.4	Relationship between the thickness of the adsorbed layer and the relative pressure	544
18.5	Classification of pores	546

18.6	The α_s method	546	
18.7	Pore size distribution determination of mesopores	547	
18.8	Analysis of micropores : the MP method	558	
18.9	Miscellaneous	560	
19 Mercury norosimetry			
19.1	Introduction	564	
19.2	Literature survey	566	
19.3	Contact angle and surface tension for mercury	568	
19.4	Principle	569	
19.5	Theory for volume distribution determination	571	
19.6	Theory for surface distribution determination	574	
19.7	Theory for length distribution determination	574	
19.8	Worked example	576	
19.9	Comparison with other techniques	578	
19.10	Correction factors	579	
20. C	Dn-line particle size analysis	583	
20.1	Introduction	583	
20.2	Steam-scanning	583	
20.3	Field-scanning	596	