Contents

Foreword	1X
Preface	XIII
Contributors	xvii
1. Manufacturing Advisory Service System for Concurrent and Collaborative	
Design of MEMS Devices	1
Xuan F Zha	
I. Introduction	2
2. Current Status of Research	4
3. Concurrent Collaborative Design Methodologies and	
Framework for MEMS	6
4. Strategy for MEMS Manufacturing Process and	
Material Selection	11
5. Knowledge Support for MEMS Manufacturing Process and	
Material Selection	14
6. MEMS Manufacturing Advisory Service System	18
7. Use of WebMEMS-MASS	26
8. Results and Discussions	29
9. Summary and Future Work	31
10. Disclaimer and Acknowledgement	31
References	32
2. Web-Enabled Knowledge-Intensive Support Framework for Collaborative	
Design of MEMS	35
Xuan F Zha	
1. Introduction	36
2. Current Status of Research	37
3. Knowledge Intensive Collaborative Framework	
for Network-Centric Design	41
4. KS-WebDMME Framework for Collaborative Design of MEMS	43
5. Development of Web-Based Collaborative MEMS Design System	46
6. Case Study: Collaborative Design for A Microgripper	52
7. Summary and Future Work	60
8. Disclaimer	63
References	63

vi CONTENTS

3.	Web-Enabled Database System Development for Design and Manufacturing	
	of Micro-Electro-Mechanical Systems (MEMS)	73
	Xuan F Zha, W.Y. Toh, and H. Du	
	1. Introduction	74
	2. MEMS Fabrication/Manufacturing Technologies	75
	3. Database Design Fundamentals	84
	4. Design of MEMS Manufacturing Databases	91
	5. Development of the Web Enabled Database System Software	96
	6. Integration of the Web Database System with MEMS	
	CAD/CAM/CAE System	103
	7. Discussions and Summary	106
	8. Disclaimer	107
	References	107
4.	Techniques in Proper Orthogonal Decomposition and Component	
	Mode Synthesis for the Dynamic Simulation of Complex MEMS	
	Devices and Their Applications	111
	WZ. Lin, S.P. Lim, and YC. Liang	
	1. Introduction	11 1
	2. Proper Orthogonal Decomposition	113
	3. Galerkin Procedure	116
	4. A Single Structural MEMS Device and Model Description	117
	5. A Complex MEMS Device and Model Description	131
	6. Concluding Remarks	148
	7. Acknowledgement	149
	References	149
5.	Techniques in Global Optimal Design for MEMS and	
	Their Applications	151
	Andojo Ongkodjojo and Francis E.H. Tay	
	1. Introduction	152
	2. Single-Objective Optimization	152
	3. Multi-Objective Optimization	152
	4. Comparison Among the SA and Other Algorithms	156
	5. Applications	157
	6. Conclusion	170
	7. Acknowledgement	171
	References	171
6.	Theory and Design of Micromechanical Vibratory Gyroscopes Vladislav Apostolyuk	173
	I. Introduction	173
	2. Operation Principle and Classification	174
	3. Dynamic Error and Bandwidth	191
	4. Design Methodology	195

CONTENTS	vii

	5. Resume	195
	References	195
7.	A Hierarchical Design Platform for Microelectrofluidic Systems (MEFS) Tianhao Zhang, Krishnendu Chakrabarty and Richard B. Fair	197
	1. Introduction	197
	2. Hierarchical Design Platform	203
	3. PCR Performance Evaluation Using the Universal Hierarchical	
	Design Platform	212
	4. Conclusion	231
	References	232
8.	Techniques in Electrostatics Analysis of MEMS and Their Applications E.T. Ong, K.M. Lim, and H.P. Lee	235
	1. Introduction	235
	2. Improving Accuracy of Electrostatics Analysis	237
	3. Improving Efficiency of Solution Method	272
	References	288
9.	Techniques for Efficient Analytical and Simulation Methods in the	
	Prototyping of MEMS Systems	293
	Y. Su, C. S. Chong, Q. X. Wang and Hua Li	
	1. Introduction	293
	2. Automatic Mesh Generation	294
	3. Automatic Model Decomposition and Reduction	300
	4. Coupled BEM and FEM	304
	5. Meshless Methodology	309
	6. Applications of Meshless Techniques	324
	7. Conclusions	330
	References	332
	Index	335