CONTENTS

I.	THE TRANSFER OF ENERGY				
	1.1	Heat Transfer—An Engineering Science	1		
	1.2	The Provisions for Energy Transfer in Nature	3		
	1.3	The Mechanism of Thermal Conduction	4		
	1.4	Thermal Conductivity	12		
	1.5	Energy Transfer Through the Junction Between Two Different Materials	15		
	1.6	Energy Transfer Through a Solid-Fluid Interface	17		
	1.7	Energy Transfer from a Heated Surface to a Fluid Stream	18		
	1.8	The Heat Transfer Coefficient	21		
	1.9	The Nature of Thermal Radiation	23		
	1.10	e. e	27		
	1.11	Separate Study of Conduction, Convection, and Radiation	29		
II.	THE FOURIER CONDUCTION EQUATION				
	2.1	Derivation of the Fourier Equation	32		
	2.2	Thermal Diffusivity	34		
	2.3	The Potential Field Equation	35		
	2.4	The Presence of a Heat Source	35		
	2.5	Variable Thermal Conductivity	36		
	2.6	Cylindrical and Spherical Coordinates	36		
III.	ONE	E-DIMENSIONAL STEADY-STATE CONDUCTION	38		
	3.1	Linear Heat Flow	38		
	3.2	Radial Heat Flow Through a Cylinder	39		
	3.3	The Logarithmic-Mean Area	40		
	3.4	Radial Heat Flow Through a Sphere	41		
	3.5	Thermal Conductivity Measurements	41		
	3.6	Unidirectional Flow with Losses to the Surroundings—Fins	44		
	3.7	The Electrical Analogy and Overall Heat Transfer	50		
	3.8	Thermal Conductance	53		
IV.	TWO	O-DIMENSIONAL STEADY-STATE CONDUCTION	56		
	4.1	The Temperature Distribution in a Thin Semi-infinite Rectangular Plate	56		
	4.2	The Flux Plot	59		
	4.3	Shape Factors from Voltage of Resistance Measurements	64		
	4.4	The Relaxation Method—One Dimension	65		
	4.5	The Relaxation Method—Two Dimensions	68		
V.	IDE	AL FLUID FLOW	74		
	5.1	Flow Without Friction—The Ideal Fluid	74		
	5.2	The Stream Function	75		
	5.3	The Velocity Potential	76		
	5.4	The Differential Equation for Ideal fluid Flow	77		
	5.5	The Fundamental Equations for One - Dimensional Flow	79		
	5.6	One – Dimensional Flow Through Ducts of Varying Cross Section—The	<u>0</u> 2		
	5.7	Venturi Compressible Flow Through a Nozzle	82 84		
VI	VICA	COUS ELUID ELOW	02		
VI.	6.1	COUS FLUID FLOW Dynamic Viscosity	93 93		
	6.2	Kinematic Viscosity	95 95		
	6.3	Viscosities of Gases and Liquids	95 95		
	0.0	· · · · · · · · · · · · · · · · · · ·			

	6.4	Viscosity Measurements	98
	6.5	Laminar and Turbulent Flow in Pipes—The Reynolds Number	100
	6.6	Application of Dimensional Analysis to Pressure Drop along a Pipe	102
	6.7	Pressure Drop along Pipes with Incompressible Fluid Flow	105
	6.8	Hydraulic Diameter	109
	6.9	Flow Through Valves and Fittings	109
	6.10	The Pitot Tube	109
	6.11	The Venturi Meter	113
	6.12	Flow about Submerged Bodies—Lift and Drag	114
	6.13	Drag Coefficient Curves	118
	6.14	Lift and Drag Coefficients of an Airfoil	119
	6.15	The Boundary Layer—Skin Friction Drag	123
	6.16	Drag at Supersonic Velocities	125
	6.17	Drag at Supersonic Velocities	127
VII.	LAM	IINAR FLOW CONVECTIVE HEAT TRANSFE	134
	7.1	The Hydrodynamic and Thermal Boundary Layers	135
	7.2	Equation of Motion for Hydrodynamic Boundary Layer	136
	7.3	Energy Equation of the Thermal Boundary Layer	137
	7.4	Velocity Distribution in the boundary Layer	139
	7.5	The Prandtl Number	143
	7.6	Temperature Distribution in the Boundary Layer	144
	7.7	The Local Heat Transfer Coefficient	144
	7.8	A Dimensionless Heat Transfer Coefficient—The Nusselt Number	147
	7.9	Velocity Distribution in the Entrance Region of a Tube	148
	7.10	Forced Convection in Laminar Flow Through a Tube or Duct	150
	7.11	Local and Average Heat Transfer Coefficients for Laminar Flow in a	1.50
	7.12	Tube The Asymptotic Value of <i>hx</i> in Tubes	152 157
			1/1
VIII.		BULENT FLOW CONVECTIVE HEAT TREANSFER	161
	8.1	Similarity Relations in Convection	161
	8.2	The Stanton Number	164
	8.2 8.3	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis	164 164
	8.2 8.3 8.4	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy	164 164 166
	8.2 8.3 8.4 8.5	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy	164 164 166 167
	8.2 8.3 8.4 8.5 8.6	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube	164 164 166 167 168
	8.2 8.3 8.4 8.5 8.6 8.7	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate	164 164 166 167
	8.2 8.3 8.4 8.5 8.6	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat	164 164 166 167 168 170
	8.2 8.3 8.4 8.5 8.6 8.7 8.8	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate	164 164 166 167 168 170 170
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow	164 166 167 168 170 170 173
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity	164 164 166 167 168 170 170 173 174
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes	164 164 166 167 168 170 170 173 174 176
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes	164 164 166 167 168 170 170 173 174 176 176
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat	164 166 167 168 170 173 174 176 176 178
	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes	164 164 166 167 168 170 170 173 174 176 176
IX.	 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat Analysis of Heat Transfer during Turbulent Flow in a Tube Heat Transfer to Liquid Metals	164 166 167 168 170 173 174 176 176 178 178
IX.	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 HEA	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat Analysis of Heat Transfer during Turbulent Flow in a Tube Heat Transfer to Liquid Metals T TRANSFER OUTSIDE TUBES AND IN HIGH-VELOCITY	164 164 166 167 168 170 173 174 176 176 176 178 183
IX.	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 HEA FLO	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat Analysis of Heat Transfer during Turbulent Flow in a Tube Heat Transfer to Liquid Metals T TRANSFER OUTSIDE TUBES AND IN HIGH-VELOCITY W	164 164 166 167 168 170 173 174 176 176 176 178 183 191
IX.	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 HEA FLO 9.1	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat Analysis of Heat Transfer during Turbulent Flow in a Tube Heat Transfer to Liquid Metals T TRANSFER OUTSIDE TUBES AND IN HIGH-VELOCITY W The Cylinder in Crossflow	164 166 167 168 170 173 174 176 176 178 178 183 191 191
IX.	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 HEA FLO	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat Analysis of Heat Transfer during Turbulent Flow in a Tube Heat Transfer to Liquid Metals T TRANSFER OUTSIDE TUBES AND IN HIGH-VELOCITY W The Cylinder in Crossflow Boundary Layer Separation Revealed by Interference Photograp	164 164 166 167 168 170 173 174 176 176 176 178 183 191
IX.	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 HEA FLO 9.1 9.2	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat Analysis of Heat Transfer during Turbulent Flow in a Tube Heat Transfer to Liquid Metals T TRANSFER OUTSIDE TUBES AND IN HIGH-VELOCITY W The Cylinder in Crossflow Boundary Layer Separation Revealed by Interference Photograp Distribution of Heat Transfer around a Cylinder	164 164 166 167 168 170 173 174 176 176 178 178 183 191 191 192
IX.	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 HEA FLO 9.1 9.2 9.3 9.4	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat Analysis of Heat Transfer during Turbulent Flow in a Tube Heat Transfer to Liquid Metals T TRANSFER OUTSIDE TUBES AND IN HIGH-VELOCITY W The Cylinder in Crossflow Boundary Layer Separation Revealed by Interference Photograp Distribution of Heat Transfer around a Cylinder Frictional Dissipation in High-Velocity Gas Flow	164 164 166 167 168 170 173 174 176 176 176 178 178 183 191 191 192 194 198
IX.	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 HEA FLO 9.1 9.2 9.3	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat Analysis of Heat Transfer during Turbulent Flow in a Tube Heat Transfer to Liquid Metals T TRANSFER OUTSIDE TUBES AND IN HIGH-VELOCITY W The Cylinder in Crossflow Boundary Layer Separation Revealed by Interference Photograp Distribution of Heat Transfer around a Cylinder	164 164 166 167 168 170 173 174 176 176 176 178 178 183 191 191 192 194 198 199
IX.	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 HEA FLO 9.1 9.2 9.3 9.4 9.5 9.6	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat Analysis of Heat Transfer during Turbulent Flow in a Tube Heat Transfer to Liquid Metals T TRANSFER OUTSIDE TUBES AND IN HIGH-VELOCITY W The Cylinder in Crossflow Boundary Layer Separation Revealed by Interference Photograp Distribution of Heat Transfer around a Cylinder Frictional Dissipation in High-Velocity Gas Flow The Stagnation Temperature and Recover Factor An Adiabatic Wall	164 164 166 167 168 170 173 174 176 176 176 178 178 183 183 191 192 194 198 199 199
IX.	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 HEA FLO 9.1 9.2 9.3 9.4 9.5 9.6 9.7	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat Analysis of Heat Transfer during Turbulent Flow in a Tube Heat Transfer to Liquid Metals T TRANSFER OUTSIDE TUBES AND IN HIGH-VELOCITY W The Cylinder in Crossflow Boundary Layer Separation Revealed by Interference Photograp Distribution of Heat Transfer around a Cylinder Frictional Dissipation in High-Velocity Gas Flow The Stagnation Temperature and Recover Factor An Adiabatic Wall The Adiabatic Flat Plate	164 164 166 167 168 170 173 174 176 176 176 178 178 183 191 191 192 194 198 199 199 200
IX.	8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 HEA FLO 9.1 9.2 9.3 9.4 9.5 9.6	The Stanton Number A General Equation for Forced Convection from Dimensional Analysis Heat Transfer and Skin Friction—The Reynolds Analogy The General Form of Reynolds Analogy Heat Transfer in Turbulent Flow in Tube Heat Transfer in Turbulent Flow Parallel to a Plate Heat Transfer from the Laminar and Turbulent Flow Regions along a Flat Plate The Theory of Turbulent Flow Eddy Viscosity Turbulent Flow Velocity Distribution in Tubes Turbulent Flow Velocity Distribution in Tubes Eddy Diffusivity for Heat Analysis of Heat Transfer during Turbulent Flow in a Tube Heat Transfer to Liquid Metals T TRANSFER OUTSIDE TUBES AND IN HIGH-VELOCITY W The Cylinder in Crossflow Boundary Layer Separation Revealed by Interference Photograp Distribution of Heat Transfer around a Cylinder Frictional Dissipation in High-Velocity Gas Flow The Stagnation Temperature and Recover Factor An Adiabatic Wall	164 164 166 167 168 170 173 174 176 176 176 178 178 183 183 191 192 194 198 199 199

Х.	NATURAL CONVECTION HEAT TRANSFER	208
	10.1 Free Convection Flow	208
	10.2 Temperature and Velocity Distributions in a Free Convection Boundary	
	La	211
	10.3 Heat Transfer from a Vertical Plate Using the Integral Method	212
	10.4 Integral forms of the Boundary Layer Equations	213
	10.5 The Local Heat Transfer Coefficient	214
	10.6 The Grashof Number	214
	10.7 The Average Heat Transfer Coefficient	216
	10.8 Free-Convection Calculations	217
XI.	CONDENSATION AND BOILING HEAT TRANSFER	221
	11.1 Condensation	221
	11.2 Film wise Condensation on Vertical Surface	221
	11.3 Condensation Heat Transfer Coefficients	223
	11.4 A Film Reynolds Number and Equations for Condensation on Vertical	
	Surfaces	224
	11.5 Boiling Liquids	224
	11.5 Doming Elquids	220
XII.	THERMAL RADIATION	231
	12.1 Monochromatic and Total Emissive Power	231
	12.2 Absorptivity, Reflectivity, and Transmissivity	232
	12.3 Kirchhoff's Law	233
	12.4 Black and Gray Bodies Defined	234
	12.5 Regular and Diffuse Surfaces; Radiation Intensity	235
	12.6 Radiation Density	236
	12.7 Isothermal Enclosure	237
	12.8 Radiation Pressure	238
	12.9 Derivation of the Stefan-Boltzmann Law	238
	12.10 Spectral distribution of Radiation	241
	12.11 The Wien Displacement Law	242
	12.12 Formulas for the Spectral Distribution of Radiation Planck's Law	245
	12.13 Emission and Reflection Characteristics of Bodies	245
XIII.	RADIATION HEAT TRANSFER	252
	13.1 Radiation Exchange between Surfaces Separated by a Non-Absorbing	
	Medium	252
	13.2 The Geometrical Factor	252 254
	13.3 The Reciprocity Theorem	255
		255
	13.5 Refractory Surfaces	258
	13.6 General Case of Radiant Heat Exchange	258
	13.7 Network Method of Analysis	260
	13.8 Radiation from Flames and Gases	262
	13.9 The Radiation Heat Transfer Coefficient	268
	13.10 Measurement of Total Normal Emissivity	269
XIV.	TRANSIENT AND PERIODIC HEAT TRANSFER	275
211 / •	14.1 Systems in Which the Thermal Conductivity Can Be Considered Infinite	275
	14.2 Response of Thermocouples	278
	14.3 Transient Temperature Measurements and Determination of the Heat	270
	Transfer Coefficient	279
	14.4 The Analogous Electrical System—The R-C Circuit	283
	14.5 Periodic Heat Flow in the Single Capacity System	286
	14.6 Solution from the Analogous Electrical Network	288
XV.	TRANSIENT TEMPERATURE VARIATION IN SOLIDS	293
	15.1 The Infinite Flat Plate or Slab	293 293
	15.1 The finite Flat Flate of Slab 15.2 Calculations of the Temperature and Heat Flow in an Infinite Plate	293 297
	13.2 Calculations of the reinperature and near Flow in an infinite Plate	271

	15.3	Heisler Charts for the Plate	300
	15.4	The Cylinder and Sphere	304
	15.5	Heisler Charts for the Cylinder and Sphere	306
	15.6	The Semi-infinite Solid	306
	15.7	Heating and Cooling of Finite Bodies	311
	15.8	The Finite-Difference Method of Schmidt	315
	15.9	Closure	319
XVI.	HEAT EXCHANGERS		321
	16.1	The Overall Heat Transfer Coefficient	322
	16.2	Fouling Factors	323
	16.3	The Logarithmic-Mean Temperature Difference	324
	16.4	Parallelflow, Counterflow and Crossflow Ecchangers	327
	16.5	Heat Exchanger Designs	330
	16.6	Heat Transfer and Pressure Drop in a Tube Bank	334
	16.7	Logarithmic-Mean Temperature Correction Design Approach	339
	16.8	Effectiveness-Number of Transfer Units Design Approach	346
INDEX			367