621.01 HSU

CONTENTS

Chapter 1. HEAT TRANSFER PROCESSES AND THEIR COEFFICIENTS	
1-1 Basic heat transfer processes	1
1-2 Thermal conductivity	1
1-3 Convective film coefficient	3
1-4 Stefan-Boltzmann's constant and equivalent radiation coefficient	3
1-5 Over-all heat transfer coefficient	4
1-6 Physical properties of substances related to heat transfer	5
General references	6
Problems	7
Chapter 2. THERMAL CONDUCTIVITES OF SOLID, LIQUID, AND GASEOUS	
SUBSTANCES	
2-1 Thermal conductivity of metals and their alloys	8
2-2 Thermal conductivity of nonmetallic solids	12
2-3 Thermal conductivity of liquids	13
2-4 Thermal conductivity of gases and vapors	15
References	16
Problems	17
Chapter 3. CONDUCTION	
3-1 Theory of heat conduction	18
3-2 Fourier's fundamental equation of steady-state heat conduction	20
3-3 Thermal resistivity	21
3-4 Variable thermal conductivity	24
3-5 Radial conduction through cylinders	25
3-6 Critical radius	27
3-7 Logarithmic mean area	29
3-8 Composite cylinders	30
3-9 Conduction through spheres	31
3-10Steady slow of heat in a rod	32
3-11Extended surfaces	35
3-12Relaxation method for steady-state conduction	37
3-13Numerical examples for the relaxation method and for solution by matrix	39
3-14Graphical methods	44
References	50
Problems	50
Chanton A LINISTEADV STATE HEAT TDANSFED	
4.1. Deriodic and eneriodic temperature variation	54
4-1 Feriouc and aperiodic temperature variation 4.2 Infinite and comi infinite colide	55
4-2 Infinite and semi-infinite solids	55
4-5 General equation of unsteagy-state near conduction	55 50
4-4 General equation in cylindrical and spherical coordinates	J0 (1
4-5 remound temperature variation within a semi-infinite solid	01
4-0 Aperiodic temperature variation within a semi-infinite solid	0/
4-7 Aperiodic temperature change within an infinite wall of finite thickness	12
4-8 Aperiodic temperature variation within a plate due to sudden change of temperature at both	77
surraces	//
4-9 Transient near transfer between a solid of infinite thermal conductivity and the surrounding	02
meatum	93

4-10Graphical method for unsteady-state heat transfer	98
References	106
Problems	107
Chapter 5. THERMAL RADIATION	
5-1 Quantum electrodynamic theory of radiation	110
5-2 A black body and monochromatic radiation	114
5-3 Emissivities and absorptivities	116
5-4 Intensity of radiation and Lambert's cosine law	122
5-5 Stefan-Boltzmann'a low, space density, and pressure of radiation	128
5-6 Wien's displacement law of radiation	131
5-7 Experimental approach to black body	136
5-8 Kirchhoff's law	137
5-9 Net heat transfer between two radiating surfaces	140
References	152
Problems	153
Chapter 6. RADIATION OF GASES AND VAPORS	
6-1 Theory of gas radiation	156
6-2 Comparison between radiation of solids and gases : absorption coefficient.	
radiation intensity and Kirchhoff's law	159
6-3 Radiation of water vapor and carbon dioxide	162
6-4 Mean beam length and shape factor in radiation of gases	165
6-5 Radiation heat transfer between a gas and its confining surfaces	170
6-6 Radiation of luminous flames	177
6.7 Radiation shields	18/
6-8 Solar radiation	185
References	105
Problems	105
Troblems	195
Chapter 7 FLUID FLOW AND DIMENSIONAL ANALYSIS	
7.1 Drusical proportion of fluids	100
7.2 Fundamental equations of fluid flow	204
7.2. Laminar and turbulant flows	204
7-5 Lammar and turbulent nows	200
7-4 The boundary-layer meory 7.5 Pressure drop in pines and the equivalent diameter	209
7-5 Principles of similarity and dimensional analysis	212
7-0 Principles of similarity and dimensional analysis	217
Decklose	224
Problems	224
Chapter 8. FORCED CONVECTION IN LAMINAR AND TURBULENT FLOW	226
8-1 The theory and types of convection processes	220
8-2 Dimensionless quantities and their physical meanings	227
8-3 Reference temperature of physical properties	230
8-4 Thermal boundary layer	232
8-5 Differential equations of forced convection in laminar boundary layer	233
8-6 Film coefficients, friction coefficients, and boundary-layer thickness of forced convection in	• • •
laminar flow over a flat plate at constant temperature	240
8-7 Nusselt number	255
8-8 Analogy between momentum and heat transfer in turbulent flow; and critical Reynolds	
number for a plate	257
8-9 Film coefficients, friction coefficients, and boundary-layer thickness of forced convection in	
turbulent flow over a flat plate at constant temperature	262
References	270
Problems	271

Chapter 9. FORCED CONVECTION IN LAMINAR AND TURBULENT FLOW INSIDE TUBES

9-1	Application of dimensional analysis in forced convection (Nusselt equation)	274
9-2	Bulk temperature and log-mean temperature difference	278
9-3	Forced convection in laminar flow inside tubes	284
9-4	Forced convection in laminar flow inside annuli	294
9-5	Analogy between momentum and heat transfer for forced convection in turbulent	
	flow inside tubes	295
9-6	Empirical equations for forced convection in turbulent flow inside tubes	297
9-7	Empirical equations for convection in transition region	302
9-8	Forced convection of liquid metal in laminar and turbulent flow inside tubes	303
9-9	Factors affecting forced convection in turbulent flow inside tubes	309
Refe	erences	313
Prob	blems	315

Chapter 10. FORCED CONVECTION IN LAMINAR AND TURBULENT FLOW AROUND SUBERGED BODIES

10-1 Drag force and pressure distribution on submerged bodies	319
10-2 Convective film coefficients for submerged cylinders	325
10-3 Convective film coefficient for submerged spheres and plates	332
10-4 Characteristic length and Reynolds number for flow across tube banks	335
10-5 Film coefficient and pressure drop in forced convection across tube bundles	339
References	350
Problems	351

Chapter 11. FREE CONVECTION

11-1 Approximate method applied to the problem of steady-state heat transfer from an isothermal	
vertical surface to a surrounding gas	354
11-2 Improved solution of steady-state heat transfer from an isothermal vertical surface of a	
surrounding gas	356
11-3 Schieren method for study of convection heat transfer	362
11-4 Interferometers for the study of convective heat transfer	366
11-5 General equation of free convection	371
11-6 Horizontal cylinders under free convection	374
11-7 Vertical cylinders and spheres, and inclined plates and cylinders under free convection	381
11-8 Horizontal plates and spheres, and inclined plates and cylinder under free convection	384
11-9 Free convection in an enclosed space between two prarllel surfaces	386
References	393
Problems	394

Chapter 12. HEAT TRANSFER WITH CHANGE OF PHASE

12-1 Types of condensation	397
12-2 Film condensation of steam on a flat surface under laminar flow	398
12-3 Film condensation on a flat surface under turbulent flow	403
12-4 Nusselt theory of film condensation on the surface of a horizontal cylinder	406
12-5 Experiments of film condensation o horizontal tubes	411
12-6 Effect of vapor velocity on film condensation	412
12-7 Effect of superheating on film condensation	413
12-8 Film condensation of mixed vapors	415
12-9 Dropwise condensation	415
12-10Evaporation	417
12-11Types of boiling	418
12-12The boiling curve	419
12-13Film boiling on a flat surface	423
12-14Film boiling around a vertical tube	425
12-15film boiling around a vertical tube	425
12-16Mechanism of nucleate boiling	426

12-17 convective film coefficient in nucleate pool boiling	430
12-18Factors affecting nucleate pool boiling	433
12-19Boiling heat transfer of liquid metals	436
12-20Flow of boiling liquid under forced convection	437
12-21Heat transfer in the freezing process	439
References	442
Problems	443

Chapter 13. HEAT EXCHANGERS

13-1 General discussion	446
13-2 The arrangement of flow path in heat exchanger	447
13-3 Basic factors in design	453
13-4 Solution based on corrected logarithmic mean temperature difference	459
13-5 Solution based on number of transfer units	466
13-6 Corrections of experimental data	470
References	472
Problems	473

Chapter 14. MEASUREMENT OF THERMAL PROPERTIES

1	
14-1 Steady-state measurement of the thermal conductivity of nonmetals	
and insulation materials	475
14-2 Unsteady-state measurement of the thermal conductivity of nonmetals	
and insulation materials	477
14-3 Steady-state measurement of the thermal conductivity of metals	481
14-4 Unsteady-state measurement of the thermal conductivity of metals	481
14-5 Determination of the thermal conductivity of metals at high temperatures	
by steady-state method	484
14-6 Determination of the thermal conductivity of high-temperature materials	
by an unsteady-state method	484
14-7 Determination of the thermal conductivity of liquid by a steady-state method	486
14-8 Determination of the thermal conductivity of gases by comparison with	
that of known gases	487
14-9 Determination of thermal conductivity of gases by direct measurement	489
14-10Determination of thermal conductivity of gases at high temperatures	490
14-11Determination of the thermal conductivity of gases by indirect measurement	491
14-12Measurement of total normal emissivity of solid material	492
14-13Measurement of spectral emissivity of solid materials at high temperatures	493
References	495

Chapter 15. AREODYNAMIC AND SPACE HEAT TRANSFER

15-1	Rarefied gases and flow regions	497
15-2	Recovery factor in continuum flow	500
15-3	Reference-temperature method for high-speed flow in the continuum region	504
15-4	Experimental data of skin-friction and heat-transfer coefficients for high-speed	
	flow in the continuum region	506
15-5	Heat transfer to solid bodies traveling at high speed in space	508
15-6	Heat transfer to high-speed solid bodies re-entering earth atmosphere	512
Refe	rences	515

Chapter 16. ELECTRICAL ANALOGY WITH HEAT TRANSFER PROBLEMS

16-1	Potential and stream functions in electrical and thermal fields for two-dimensional	
	and steady-state conditions	516
16-2	Electrical analog method for measurement of shape factors	520
16-3	Electrical analogy with one-dimensional unsteady-state heat transfer	521
16-4	Application of electrical analogy to problems of transient heat flow in cylinders and spheres	524
16-5	Electrical analogy with transient heat convection between a solid of infinite thermal	
	conductivity and the surrounding medium	526

16-6 Electrical analogy with radiation heat transfer in enclosures	529
References	535
Chapter 17. MASS TRANSFER	
17-1 Modes of mass transfer	536
17-2 Molecular diffusion of gases	537
17-3 Mall diffusivity of gases	542
17-4 Molecular diffusion of liquids	545
17-5 Mass diffusivity of liquids	548
17-6 Mass transfer by convection	549
17-7 Empirical equations for mass transfer by turbulent convection	553
17-8 Mass transfer between two phases and the two-film theory	556
17-9 Mass transfer by change of phase	561
References	562
Problems	

INDEX