CONTENTS

		Page
	Contributors	ix
	Preface	xi
1.	Introduction and Statement of the Problem	1
2.	Strategies for Sustainable Energy Production : the Chemist's Approach	5
3.	Role of Chemistry in Improving Traditional Energetics via New Combustion	
	Technologies and Chemical Heat Recuperation Techniques	17
4.	Role of Chemistry in Improving Environmental Safety and Pollution Control of	
	Traditional Sources of Energy	35
5.	Challenge of Hydrogen as an Energy Carrier of the Future	43
6.	Integrating Chemical Energy Carriers (other than Hydrogen) for the Future	55
7.	Production of Traditional Carbon-containing Energy Carriers from Alternative Non-	
	renewable Raw Materials (other than Oil, Natural Gas or Coal)	69
8.	Electrical Energy Carriers, Chemical Technologies and Electricity	79
9.	Biomass : a Future Renewable Carbon Feedstock for Energy	97
10.	Bilolgical Conversion of Biomass to High-quality Chemical Carriers	121
11.	Thermal Biomass Conversion Technologies for Energy and Energy	
	Carrier Production	137
12.	Thermochemical Energy Conversion	187
13.	Quantum Chemical Processes for the Conversion of Energy	207
14.	General Conclusions	231
	Index	233