621.312136 HEI 2nd ed.

Contents

Preface		ix
Notation		
1	Wind Energy Power Plants	1
	1.1 Wind Turbine Structures	1
	1.2 A Brief History	4
	1.3 Milestones of Development	6
	1.4 Functional Structures of Wind Turbines	19
2	Wind Energy Conversion Systems	31
	2.1 Drive Torque and Rotor Power	31
	2.1.1 Inputs and outputs of a wind turbine	32
	2.1.2 Power extraction from the airstream	32
	2.1.3 Determining power or driving torque by the blade element method	34
	2.1.4 Simplifying the computation method	38
	2.1.5 Modelling turbine characteristics	43
	2.2 Turbines	47
	2.2.1 Hub and turbine design	50
	2.2.2 Rotor blade geometry	52
	2.3 Power Control by Turbine Manipulation	59
	2.3.1 Turbine yawing	59
	2.3.2 Rotor blade pitch variation	69
	2.3.3 Limiting power by stall control	98
	2.3.4 Power control using speed variation	102
	2.4 Mechanical Drive Trains	104
	2.5 System Data of a Wind Power Plant	109
	2.5.1 Turbine and drive train data	110
	2.5.2 Machine and tower masses	110
	2.5.3 Machine costs	117
3	Generating Electrical Energy from Mechanical Energy	119
	3.1 Constraints and Demands on the Generator	119
	3.2 Energy Converter Systems	123

207

212

214

225

226

228

228

229

231

234

236

236

237

237

249

260

269

274

274

276

277

278

281

284

284

285

291

3.2.1 Asynchronous generator construction	125	
3.2.2 Synchronous generator construction	126	
3.3 Operational Ranges of Asynchronous and Synchronous Machines	128	
3.4 Static and Dynamic Torque	133	
3.4.1 Static torque	134	
3.4.2 Dynamic torque	147	
3.5 Generator Simulation	155	
3.5.1 Synchronous machines	155	
3.5.2 Asynchronous machines	159	
3.6 Design Aspects	162	
3.6.1 Asynchronous generators	162	
3.6.2 Synchronous generators for gearless plants	175	
3.7 Machine Data	188	
3.7.1 Mass and cost relationships	189	
3.7.2 Characteristic values of asynchronous machines	191	
3.7.3 Characteristic values of synchronous machines	193	
	199	
The Transfer of Electrical Energy to the Supply Grid		
4.1 Power Conditioning and Grid Connection	201	
4.1.1 Converter systems	201	
4.1.2 Power semiconductors for converters	204	

4.1.3 Functional characteristics of power converters

4.1.7 Protective measures during power conditioning

4.2.4 Isolated operation and rapid auto-reclosure

4.2.5 Overvoltages in the event of grid faults

4.3.1 General compatibility and interference

4.3.2 Output behaviour of wind power plants

4.4 Resonance Effects in the Grid During Normal Operation

4.5 Remedial Measures against Grid Effects and Grid Resonances

4.5.3 Function of harmonic absorber filters and compensation units

4.6.2 Grid support and grid control with wind turbines and other

4.1.6 Electromagnetic compatibility (EMC)

4.2.1 Fuses and grid disconnection

4.2.3 Increase of short-circuit power

4.3.3 Voltage response in grid supply

4.3.4 Harmonics and subharmonics

4.5.4 Grid-specific filter layout

4.6.1 Supply by wind turbines

renewable systems

4.5.5 Utilizing compensating effects

4.2.2 Short-circuiting power

4.1.4 Converter designs

4.1.5 Indirect converter

4.2 Grid Protection

4.3 Grid Effects

4.5.1 Filters

4.5.2 Filter design

4.7 Grid Connection Rules

4.6 Grid Control and Protection

1	

4

5	Control and Supervision of Wind Turbines		
	5.1 System Requirements and Operating Modes	299	
	5.2 Isolated Operation of Wind Turbines	300	
	5.2.1 Turbines without a blade pitch adjustment mechanism	302	
	5.2.2 Plants with a blade pitch adjustment mechanism	303	
	5.2.3 Plants with load management	303	
	5.2.4 Turbine control by means of a bypass	304	
	5.3 Grid Operation of Wind Turbines	304	
	5.4 Control Concepts	309	
	5.4.1 Control in isolated operation	309	
	5.4.2 Regulation of variable-speed turbines	316	
	5.4.3 Regulation of variable-slip asynchronous generators	316	
	5.4.4 Regulation of turbines with a rigid connection to the grid	331	
	5.5 Controller Design	331	
	5.5.1 Adjustment processes and torsional moments at the rotor blades	334	
	5.5.2 Standardizing and linearizing the variables	338	
	5.5.3 Control circuits and simplified dimensioning	342	
	5.5.4 Improving the control characteristics	346	
	5.6 Management System	352	
	5.6.1 Operating states	353	
	5.6.2 Faults	363	
	5.6.3 Determining the state of system components	364	
	5.7 Monitoring and Safety Systems	365	
	5.7.1 Wind measuring devices	365	
	5.7.2 Oscillation monitoring	366	
	5.7.3 Grid surveillance and lightning protection	366	
	5.7.4 Surveillance computer	367	
	5.7.5 Fault prediction	368	
6	Using Wind Energy	371	
	6.1 Wind Conditions and Energy Yields	371	
	6.1.1 Global wind conditions	371	
	6.1.2 Local wind conditions and annual available power from the wind	373	
	6.1.3 Calculation of site-specific and regional turbine yields	375	
	6.1.4 Wind atlas methods	379	
	6.2 Potential and Expansion	383	
	6.3 Economic Considerations	387	
	6.3.1 Purchase and maintenance costs	388	
	6.3.2 Power supply and financial yields	388	
	6.3.3 Electricity generation costs	390	
	6.3.4 Commercial calculation methods	391	
	6.4 Legal Aspects and the Installation of Turbines	395	
	6.4.1 Immission protection	396	
	6.4.2 Nature and landscape conservation	398	
	6.4.3 Building laws	400	
	6.4.4 Planning and planning permission	401	
	6.4.5 Procedure for the erection of wind turbines	403	
Re	References		

Index

vii

417