621.312136 WINd

Contents

About the Authors			xi
Prefa	ace		xiii
Acro	Acronyms and Symbols		
1	Electri	city Generation from Wind Energy	1
1.1	Wind F	arms	2
1.2	Wind Energy-generating Systems		3
	1.2.1	Wind Turbines	3
	1.2.2	Wind Turbine Architectures	7
1.3	Wind Generators Compared with Conventional Power Plant		10
	1.3.1	Local Impacts	11
	1.3.2	System-wide Impacts	13
1.4	Grid Co	ode Regulations for the Integration of Wind Generation	14
	References		17
2	Power	Electronics for Wind Turbines	19
2.1	Soft-sta	rter for FSIG Wind Turbines	21
2.2	Voltage Source Converters (VSCs)		21
	2.2.1	The Two-level VSC	21
	2.2.2	Square-wave Operation	24
	2.2.3	Carrier-based PWM (CB-PWM)	25
	2.2.4	Switching Frequency Optimal PWM (SFO-PWM)	27
	2.2.5	Regular and Non-regular Sampled PWM (RS-PWM	• •
		and NRS-PWM)	28
	2.2.6	Selective Harmonic Elimination PWM (SHEM)	29
	2.2.7	Voltage Space Vector Switching (SV-PWM)	30
	2.2.8	Hysteresis Switching	33
2.3	Application of VSCs for Variable-speed Systems		33
	2.3.1	VSC with a Diode Bridge	34

	2.3.2 Back-to-Back VSCs	34	
	References	36	
3	Modelling of Synchronous Generators	39	
3.1	Synchronous Generator Construction	39	
3.2	The Air-gap Magnetic Field of the Synchronous Generator	39	
3.3	Coil Representation of the Synchronous Generator	42	
3.4	Generator Equations in the dq Frame	44	
	3.4.1 Generator Electromagnetic Torque	47	
3.5	Steady-state Operation	47	
3.6	Synchronous Generator with Damper Windings	49	
3.7	Non-reduced Order Model	51	
3.8	Reduced-order Model	52	
3.9	Control of Large Synchronous Generators	53	
	3.9.1 Excitation Control	53	
	3.9.2 Prime Mover Control	55	
	References	56	
4	Fixed-speed Induction Generator (FSIG)-based Wind		
	Turbines		
4.1	Induction Machine Construction	57	
	4.1.1 Squirrel-cage Rotor	58	
	4.1.2 Wound Rotor	58	
4.2	Steady-state Characteristics		
	4.2.1 Variations in Generator Terminal Voltage	61	
4.3	FSIG Configurations for Wind Generation		
	4.3.1 Two-speed Operation	62	
	4.3.2 Variable-slip Operation	63	
	4.3.3 Reactive Power Compensation Equipment	64	
4.4	Induction Machine Modelling		
	4.4.1 FSIG Model as a Voltage Behind a Transient		
	Reactance	65	
4.5	Dynamic Performance of FSIG Wind Turbines		
	4.5.1 Small Disturbances	70	
	4.5.2 Performance During Network Faults	73	
	References		
5	Doubly Fed Induction Generator (DFIG)-based Wind		
	Turbines	77	
5.1	Typical DFIG Configuration	77	

5.2	Steady-state Characteristics		77
	5.2.1	Active Power Relationships in the Steady State	80
	5.2.2	Vector Diagram of Operating Conditions	81
5.3	Control	1 for Optimum Wind Power Extraction	83
5.4	Control	Strategies for a DFIG	84
	5.4.1	Current-mode Control (PVdq)	84
	5.4.2	Rotor Flux Magnitude and Angle Control	89
5.5	Dynam	ic Performance Assessment	90
	5.5.1	Small Disturbances	91
	5.5.2	Performance During Network Faults	94
	Referen	nces	96
6	Fully F	Rated Converter-based (FRC) Wind Turbines	99
6.1	FRC S	ynchronous Generator-based (FRC-SG) Wind Turbine	100
	6.1.1	Direct-driven Wind Turbine Generators	100
	6.1.2	Permanent Magnets Versus Electrically Excited	
		Synchronous Generators	101
	6.1.3	Permanent Magnet Synchronous Generator	101
	6.1.4	Wind Turbine Control and Dynamic Performance	
		Assessment	103
6.2	FRC Induction Generator-based (FRC-IG) Wind Turbine		113
	6.2.1	Steady-state Performance	113
	6.2.2	Control of the FRC-IG Wind Turbine	114
	6.2.3	Performance Characteristics of the FRC-IG Wind	
		Turbine	119
	Referen	nces	119
7	Influen	ce of Rotor Dynamics on Wind Turbine Operation	121
7.1	Blade I	Bending Dynamics	122
7.2	Derivat	tion of Three-mass Model	123
	7.2.1	Example: 300 kW FSIG Wind Turbine	124
7.3	Effectiv	ve Two-mass Model	126
7.4	Assess	ment of FSIG and DFIG Wind Turbine Performance	128
	Acknowledgement		
	Referen	ices	132
8	Influence of Wind Farms on Network Dynamic		
	Perform		135
8.1	•	ic Stability and its Assessment	135
8.2	Dynam	ic Characteristics of Synchronous Generation	136

8.3	A Synchronizing Power and Damping Power Model of a		
	-	nous Generator	137
8.4	Influence	e of Automatic Voltage Regulator on Damping	139
8.5	Influence	e on Damping of Generator Operating Conditions	141
8.6		e of Turbine Governor on Generator Operation	143
8.7		t Stability	145
8.8	Voltage	-	147
8.9	Generic	Test Network	149
8.10	Influence of Generation Type on Network Dynamic Stability		150
	8.10.1	Generator 2 – Synchronous Generator	151
	8.10.2	Generator 2 – FSIG-based Wind Farm	152
	8.10.3	Generator 2 – DFIG-based Wind Farm	
		(PVdq Control)	152
	8.10.4	Generator 2 – DFIG-based Wind Farm	
		(FMAC Control)	152
	8.10.5	Generator 2 – FRC-based Wind Farm	152
8.11	Dynamic	Interaction of Wind Farms with the Network	153
	8.11.1	FSIG Influence on Network Damping	153
	8.11.2	DFIG Influence on Network Damping	158
8.12	Influence of Wind Generation on Network Transient		
	Performance		
	8.12.1	Generator 2 – Synchronous Generator	161
	8.12.2	Generator 2 – FSIG Wind Farm	162
	8.12.3	Generator 2 – DFIG Wind Farm	163
	8.12.4	Generator 2 – FRC Wind Farm	165
	References		165
9	Power S	systems Stabilizers and Network Damping	
		ity of Wind Farms	167
9.1	-	System Stabilizer for a Synchronous Generator	167
	9.1.1	Requirements and Function	167
	9.1.2	Synchronous Generator PSS and its Performance	
		Contributions	169
9.2	A Power	System Stabilizer for a DFIG	172
	9.2.1	Requirements and Function	172
	9.2.2	DFIG-PSS and its Performance Contributions	178
9.3	A Power	System Stabilizer for an FRC Wind Farm	182
	9.3.1	Requirements and Functions	182

Contents

	9.3.2	FRC–PSS and its Performance Contributions	186
	Referen	ces	191
10	The Int	egration of Wind Farms into the Power System	193
10.1	Reactive Power Compensation		193
	10.1.1	Static Var Compensator (SVC)	194
	10.1.2	Static Synchronous Compensator (STATCOM)	195
	10.1.3	STATCOM and FSIG Stability	197
10.2	HVAC	Connections	198
10.3	HVDC	Connections	198
	10.3.1	LCC-HVDC	200
	10.3.2	VSC-HVDC	201
	10.3.3	Multi-terminal HVDC	203
	10.3.4	HVDC Transmission – Opportunities and	
		Challenges	204
10.4		e of the Design of a Submarine Network	207
	10.4.1		207
	10.4.2	Onshore Grid Connection Points	208
	10.4.3	Technical Analysis	210
	10.4.4		212
	10.4.5	Recommended Point of Connection	213
	Acknow	ledgement	214
	References		214
11	Wind T	urbine Control for System Contingencies	217
11.1	Contribution of Wind Generation to Frequency Regulation		217
	11.1.1	Frequency Control	217
	11.1.2	Wind Turbine Inertia	218
	11.1.3	Fast Primary Response	219
	11.1.4	Slow Primary Response	222
11.2	Fault Ride-through (FRT)		228
	11.2.1	FSIGs	228
	11.2.2	DFIGs	229
	11.2.3	FRCs	231
	11.2.4	VSC-HVDC with FSIG Wind Farm	233
	11.2.5	FRC Wind Turbines Connected Via a VSC-HVDC	234
	References		237
Арре	ndix A: S	State–Space Concepts and Models	241

Appendix B: Introduction to Eigenvalues and Eigenvectors	249
Appendix C: Linearization of State Equations	255
Appendix D: Generic Network Model Parameters	259
Index	265