621.31242 BAG

CONTENTS

	Page
 Part One. GENERAL ASPECTS Chapter One. WORKING PRINCIPLES OF CHEMICAL POWER SOURCES 1.1 Basic concepts 1.2 Chemical reactions in cells 1.3 Open-circuit voltage, on –load voltage and current density 1.4 Faraday's law : specific consumption of reactants 1.5 Thermodynamics of cell reactions 1.6 Analogues of chemical power sources 	3 4 11 12 14 19
Chapter Two. CELL TYPES 2.1 Electrochemical system of cells 2.2 Cell designs	22 29
Chapter Three. PERFORMANCE 3.1 Electrical characteristics 3.2 Operational characteristics 3.3 Comparative characteristics	38 46 47
 Chapter Four. ELECTROCHEMICAL ASPECTS OF CELL OPERATION 4.1 Refined concept of electrode potential 4.2 Electrolytes : passage of current and transfer of ions and reactants 4.3 Polarization of the electrodes 4.4 Elevelling-off elects. Distributed-parameter systems 4.5 Self-discharge 4.6 Electrocatalysis 	52 61 68 72 76 79
 Chapter Five. REAL ELECTRODES; POROUS SYSTEMS 5.1 Properties of porous and disperse systems 5.2 Active mass 5.3 Secondary transformations in electrodes 5.4 Macrokinetics of processes in porous electrodes 	84 91 95 97
 Chapter Six. DESIGN AND TECHNOLOGY 6.1 Main features of design 6.2 Ohmic losses 6.3 Separators 6.4 Operation of batteries 6.5 Sealing 6.6 Thermal processes in cells 6.7 Reserve batteries 	110 113 115 120 124 132 136
 Chapter Seven. OPERATIONAL PROBLEMS 7.1 Discharge and maintenance of primary cells 7.2 Maintenance of storage cells 7.3 General aspects of battery maintenance 7.4 Charging devices 7.5 Transient processes 7.6 Reliability of cells and batteries 	139 140 147 149 157 162
Chapter Eight. APPLICATIONS OF CELLS 8.1 Present-day applications 8.2 Possible future fields of application	165 169

8.3 Economic problems	174
Par Two. VARIOUS CELL SYSTEMSChapter Nine.MANGANESE-ZINE CELLS WITH SALT SOLUTION ELECTROLYTE	
9.1 General	181
9.2 Electrochemical and physicochemical processes	182
9.3 Types of the manganese-zinc cells	186
9.4 Performance	194
Chapter Ten. LEAD (ACID) STORAGE CELLS 10.1 General	198
10.2 Electrochemical and physicochemical processes	199
10.3 Construction and manufacture	207
10.4 Performance	214
10.5 Maintenance of lead storage cells	219
10.6 Further development of lead storage cells	220
Chapter Eleven. NICKEL-CADMIUM AND NICKEL – IRON STORAGE CELLS	
11.1 General	224
11.2 Electrochemical and physicochemical processes	225
11.3 Construction and manufacture	228
11.4 Performance	235
11.5 Maintenance of alkaline storage cells	239
Chapter Twelve. ALKALINE CELLS WITH ZINC ANODES	
12.1 Zinc anode in alkaline electrolyte	242
12.2 Alkaline copper-zinc cells	247
12.3 Mercury-zinc cells	250
12.4 Alkaline manganese – zinc cells	254
12.5 Silver-zinc cells	260
12.6 Nickel-zinc storage cells	265
Chapter Thirteen. VARIOUS SYSTEMS WITH AQUEOUS SOLUTIONS	
13.1 Use of magnesium and aluminium in chemical power sources	269
13.2 Manganese – magnesium cells	272
13.3 Water –cativated reserve cells with magnesium anodes	274
13.4 Chemical power sources with organic reactants	277
13.5 Various cells with PbO_2 electrodes	280
13.6 Standard cells	282
Chapter Fourteen. COMPOUND CELLS	
14.1 Air (oxygen) electrodes	285
14.2 Air-metal cells	290
14.3 Nickel-hydrogen storage cells	297
14.4 Chlorine-zinc storage cells	301
14.5 Lithium cells with aqueous electrolyte	304
Chapter Fifteen. CELLS WITH NON-AQUEOUS SOLUTIONS	
15.1 Lithium cells with electrolytes based on aprotic solvents	309
15.2 Ammonia-activated cells	317
Chapter Sixteen. CELLS WITH SOLID AND MOLTEN ELETROLYTES	
16.1 Solid electrolytes in chemical power sources	320
16.2 Low-temperature miniature cells with solid electrolytes	323
16.3 Sulphur-sodium storage cells	324
16.4 Cells with molten electrolytes	330
16.5 Reserve-type thermal cells and batteries	333

Chapter Seventeen. FUEL CELLS (ELECTROCHEMICAL GENERATORS)	
17.1 General	338
17.2 Construction of fuel cells	341
17.3 Reactants for cells	343
17.4 Auxiliary systems	347
17.5 Oxygen (air) – hydrogen fuel cells with alkaline electrolyte	348
17.6 Oxygen-hydrogen cells with acidic electrolyte	357
17.7 Oxygen-hydrogen cells with ion-exchange membranes (solid polymer electrolyte)	358
17.8 Hydrazine fuel cells	359
17.9 Low-temperature fuel cells with organic fuels	362
17.10High-temperature fuel cells	363
17.11Prospects for application of fuel cells	366