621.31244 NATO

CONTENTS

Recombi	inat	ion in Solar Cells : Theoretical Aspects	1
	1.	Introduction	1
	2.	Conventions Usually Made for p-n Junctions and Solar Cells	2
	3.	Three Laws of Photovolatics	2
	4.	Maximum Power, Recombination and the Ideality Factor	11
	5.	Junction Currents as Recombination Currents	14
	6.	Steady-State Recombination Rates at Given Plane X	17
	7.	Junction Model and Space-Dependences	21
	8.	Transition Region Recombination Current Density	27
	9.	The Bulk-Regions Recombination Current Density	33
	10.	Summary of p-n Junction Current Densities from Sections 8 and 9	37
	11.	Configuration and Electrostatics of the Schottky Barrier Solar Cell	39
	12.	The Place of Recombination Effects in (p-type) Schottky Barrier Solar Cells	44
	13.	Recombination Currents and Voltage Drops in (p-type) Schottky Barrier Sola	ıt
		Cells	48
	14.	Conclusion	54
	A F	ew More General Topics	
	(I)	Thermodynamic Efficiency	55
	(II)	· · ·	57
	(III)		57
	(IV)	-	58
	(V)		61
		erences	62 63
Schottky	v Ba	rrier Solar Cells	67
•		Introduction	67
	2.	The Schottky Barrier Cell Principle	68
		2.1 Principle of SBSC Operation	70
		2.2 Current Transport Mechanism in Schottky Barriers	72
		2.3 Effect of the MIS Potential Distribution upon the Diode	
		Quality Factor n	78
		2.4 The MIS SBSC under Illumination	79
		2.5 The Minority Carrier MIS SB Cell	82
	3.	Solar Cell Parameters and Design Considerations	87
		3.1 Metal-Semiconductor Barrier Height	87
		3.2 Diode Quality Factor n	88
		3.3 Interfacial Oxide Thickness	89
		3.4 Transmission Properties of the Metal	91
		3.5 Spectral Response	92
		3.6 Substrate Resistivity	94
		3.7 Substrate Thickness	94
		3.8 Series Resistance	95
	4.	Results and Discussion of Typical Silicon MIS Cells	97
		4.1 Open Circuit Voltage	97
		4.2 Shore Circuit Current Density	98
			101

	 4.4 Efficiency 4.5 The Min MIS Cell 4.6 The MIS Inversion Layer Cell 4.7 Stability of MIS Solar Cells 4.8 The Future for MIS Cell – Cheaper Substrates ? cknowledgement eferences 	102 103 106 107 112 113 113
CdS – Cu , 1.	S Thin Film Solar Cells Introduction	117 117
2.	CdS Thin Film Technology 2.1 Vacuum Vapor Deposition of CdS Films 2.2 Sputtering 2.3 Spray Deposition 2.4 Sintering	119 119 122 122 123
3.	 Cu_x S Thin Film Technology 3.1 Dipping Process (Wet Process) 3.2 Evaporation of CuC1 3.3 Evaporation of Cu_x S 3.4 Sputtering of Cu_x S 	124 124 125 125 126
4.	 Properties of the CdS Layer 4.1 Crystallography and Grain Size of CdS Films 4.2 Optical Properties of the CdS Films 4.3 Luminescence 4.4 Electrical Properties of CdS Films 	127 127 129 130 131
5.	 Properties of Cu_x S Films 5.1 Stoichiometry 5.2 Coulometric Titration 5.3 Optical Properties 5.4 Electrical Properties 	131 131 132 133 135
6.	 Properties of the Heterojunction 6.1 Structure of the Heterojunction 6.2 Surface Effects of the Cu_x S Film 6.3 Capacitance Measurements 6.4 Diffusion Length in Cu_x S and CdS 6.5 Spectral Response 6.6 Band Diagram 	135 135 139 140 143 146 147
7.	 Technology of CdS- Cu_x S Phorovoltaic Generators 7.1 Cell Structures 7.2 Fabrication Process of CdS-Cu_x S Cells 	147 148 149
8. Re	Performance Characteristics of Solar Cells and Generators eferences	152 154
	 Design of an Optimized Solar Cell Structure for Tandem Cell Systems Selection of Semiconductors for Tandem Solar Cell Systems Optimized Design of Direct Gap Photovoltaic Cells Monolothic and Split Spectrum Tandem Cell Systems 	157 157 158 166 170 175 182
V	Semiconductors	185

	VIII.	Thin Films of CuInSe ₂ and Solar Cells Made from Them	192
	IX.	Summary and Conclusions	196
	Referen	ces	197
The Pri	inciples o	of Photoelectrochemical Energy Conversion Heinz Gerischer	199
	I.	Sunlight Conversion into Chemical Energy	199
		Photoredox Reactions	201
		Redox Energies and the Scales of Redox Potentials	203
		Photosynthesis as an Example	206
		Artificial Systems for Energy Conversion	209
		Reference to Lecture for Further Conversion	213
	II.	Fundamentals of Semiconductor Electrochemistry	214
		The Space Charge Layer	214
		Kinetics of Electron Transfer Reactions	220
		References	230
	III.	The Semiconductor Electrolyte Contact under Illumination and	250
		Photodecomposition Reactions	231
		Distribution of Electrons and Holes under Illumination	231
		Photodecompositon of Semiconductors	231
		References	239
	IV.	Photoelectrochemical Cells and their Problems	243
	1 V.		246
		Regenerative Cells	
		Storage Cells	252
		Energy conversion Efficiency	258
		References	261
Dhotoo	laatnaaha	emical Devices for Solar Energy Conversion	263
I notoe	Introdu		263
		Discussion of Photoelectrochemical Devices	203 265
	General	Semiconductor Electrolyte Junctions – Conventional Picture	203 265
			263
		Photo – Induced Charge Transfer Reactions	
		Semiconductor Electrode Stability	268
		Electrochemical Photovoltaic Cells	271
		Photoelectrosynthetic Cells	273
		Photoelectrolysis Cells	273
		Photocatalytic Cells	278
		General Considerations	280
		Effects and Importance of Surface States	280
		Unpinned Band Edges	283
		Hot Carriers	289
		Surface Modification	297
		Electrochemical Photovoltaic Cells	299
		Reduced Surface and Grain Boundary Recombination	299
		Non-aqueous Electrolytes	301
		Storage Systems	301
		General Status and Prognosis for Electrochemical Photov	oltaic
		Cells	301
		Photoelectrosynthetic Cells	302
		Derivatized Electrodes	302
		Photo – Oxidation and Phot-Reduction on the same Surfa	ce and in
		Particulate System	302
		Dye Sensitization	307
		Layered Compounds and other New Materials	307
		General Status and Prognosis for Photoelectrosynthesis	309
	Acknow	vledgement	309
	Referen		310
			210
The Iro	on Thion	ie Photogalvanic Cell	313
	Introdu		313
		The Reaction Scheme	313

	The Differential Equation	315
	The Characteristic Lengths	316
	The Kinetic Length	316
	Bleaching and the Generation Length	317
	The Recipe for Success	318
	The Electrode Kinetics	319
	Current Voltage Characteristics	320
	Homogeneous Kinetics	321
	The Iron Thionine System	321
	The Reaction Scheme	322
	Quantum Efficiencies	323
	The Parameters	324
	Rotating Transparent Disc Electrodes	324
	The Thionine Systems	328
	The Synthesis of Modified Thiazine Dyes	328
	The Properties of the Modified Dyes	329
	Self Quenching	332
	Summary of Progress to Date	333
	Electrode Selectivity	333
	Introduction	333
	The Problem	333
	The Manufacture of the Thionine Coated Electrode	334
	Properties of the Thionine Coated Electrode	334
	Electrode Kinetics	335
	Application to Photogalvanic Systems	336
		330
	The Efficiencies of Photogalvanic Cells Introduction	
		337
	The Concentration of Fe (II)	337
	The Concentration of Fe (III) The Maniatian of Demonstration $A \Gamma^{\theta}$ and $L 2$	337
	The Variation of Power with ΔE^{θ} and k-2	340
	Variation with pH	343
	Final Summary	344
	Acknowledgements	345
	References	346
Charge	Separation and Redox Catalysis in Solar Energy Conversion Processes	349
	1. Introduction	349
	2. Design of Photoredox Reactions for Photodissociation of Water	357
	2.1 Photodecomposition of Water in Homogeneous Solutions	357
	2.2 Photoproduction of H_2 from Water	357
	2.3 Redox Systems for O_2 – Evolution from Water	363
	3. Stabilization of Redox Intermediates through the Use of	
	Multiphase Systems	374
	3.1 Micelles	376
	3.2 Light – Induced Charge Separation in Vesicles	391
	3.3 Charge Separation Phenimena in Other Multiphase Systems	392
	4. Redox Catalysis	393
	4.1 Concept of Redox Catalysis	393
	4.2 Redox Catalysis in the H_2 -Evolution Reaction from Water	394
	4.3 Redox Catalysis in the O_2 -Evolution Reaction from Water	398
	4.4 Coupled Redox Catalysts for Water Decomposition	399
		577
	5. Photoelectrochemical Cells Based on Redox Reactions	400
	References	403