CONTENTS

Chap	ter 1 Electromagnetism. Systems Units	1
1-1	Historical Background	1
1-2	Systems of Units	3
1-3	Strength of Magnetic Field. Lines of Magnetic Force	7
1-4	Lines of Induction. Flux and Flux Density	10
1-5	Ampere's Law	11
1-6	The Law of Electromagnetic Induction	14
1-7	Vector Relations between Motor and Generator Parameters. Fleming's Rules	16
1-8	MKS Units of Flux, Flux Density, and Field Strength	20
1-9	Magnetizing Effect of Current in Long Straight Wire	23
1-10	Force between Parallel Wires	25
1-11	Field Strength on Axis of circular Coil	26
1-12	Field Strength on Axis of Solenoid	27
1-13	Magnetomotive Force. The Law of the Magnetic Circuit	29
1-14	The Rationalized MKS System of Units	30
1-15	Composite Magnetic Circuits	32
1-16	BH Curves	33
	Examples of Magnetic Circuit Calculations	34
	The Magnetic Circuit of Rotating Machines	37
	Energy Stored in a Magnetic Field. Self-inductance	38
	Energy of Current-carrying Coil in an Extraneous Magnetic Field	41
1-21	Mutual Inductance	42
Chap	ter2 Armature Windings and Electromotive Force	45
2-1	Structural Details	4 5
2-2	Types of Windings	47
2-3	Number of Brush Set Required	52
2-4	Numerical Relations between Winding Parameters	56
2-5	Restrictive Conditions in Wave Windings	60
2-6	Dummy Coils in Wave Windings	61
2-7	Degree of Reentrancy of a Winding	61
2-8	Wave Windings with Reduced Number of Commutator Segments	64
2-9	Double Commutator Windings	65
2-10	Equalizer Connections in Simplex Lap Windings	65
2-11	Equalizer connections in Multiplex Windings	71
2-12	Equalizers in Duplex Lap Windings	72
2-13		74
2-14	Comparative Advantages and Disadvantages of Lap and Wave Windings	75
		76
2-16	Armature Resistance. Effect of Temperature upon Resistance	79
2-17		80
2-18	6	83
2-19	6	85
2-20	The Acyclic Generator	87
Chap	ter3 Excitation of the Main Field	91
3-1	Elementary Design Considerations	91
3-2	The Magnetization Curve. Magnetic Leakage	93
3-3	Airgap Flux Distribution	96
3-4	Experimental Determination of Airgap Flux Distribution	98
3-5	Corrected Breadth of Pole Are	100

3-6	Corrected Length of Airgap	100
3-7	Corrected Axial Length of Armature	102
3-8	Ampere Turns Required by the Airgap	103
3-9	Ampere Turns Required by the Teeth	104
3-10		106
3-11		107
3-12	1 1 1	108
3-13	Design and Construction of the Field Winding	108
Chap		112
4-1	Magnetizing Effect of Armature Current	112
4-2	Distribution of the Armature Field	113
4-3	Distribution of the Resultant Field	115
4-4	Commutation	116
4-5	Cross-magnetizing and Demagnetizing Ampere Turns	118
4-6	Demagnetizing Effect of Armature Cross Magnetization	120
4-7	Interpoles or Commutating Poles	125
4-8	Interpole Excitation	126
4-9	Leakage Flux in Interpole Machines	129
4-10	/ I	129
4-11	Compensating Windings	130
Chap		134
5-1	Types of Field Excitation	134
5-2	No-load Characteristics	136
5-3	External Characteristic, Separately Excited Generator	137
5-4	Load Characteristic, Separately Excited Generator	138
5-5	Voltage Build-up, Self-excited Generators	139
5-6	External Characteristic of Series Generator at Constant Speed	142
5-7	External Characteristic of Shunt Generator at Constant Speed	143
5-8	Voltage Regulation	146
5-9	External Characteristic of Compound Generator at Constant Speed	147
5-10	The Series Field Shunt	150
5-11	Parallel Operation of Generators	153
5-12	1	154
5-13	Division of Load between Shunt Generators in Parallel	155
5-14	1 1	158
5-15	Compound Generators for Three-wire Systems	160
5-16	Automatic Voltage Regulators	164
Chap		172
6-1	Reciprocal Relations between Motors and Generators	172
6-2	Counter EMF and Speed of Motors	172
6-3	Torque and Mechanical Power	174
6-4	Manually Operated Starting Rheostats	175
6-5	Speed Characteristics of Separately Excited and Shunt Motors	179
6-6	Torque Characteristics of Separately Excited and Shunt Motors	182
6-7	Speed and Torque Characteristic Curves of the Series Motor	183
6-8	Speed and Torque Characteristic of Compound Motor	185
6-9	Comparison of Motor Characteristics	187
6-10	Calculation of Motor Characteristics	188
Chap	ter 7 Control of Motors and Generators	193
7-1	Automatic Starters	193
7-2	Subdivision of Starting Rheostats	199
7-3	Acceleration of Motor Speed	202
7-4	Retardation of Motor Speed	206
7-5	Principles of Speed Control	208
7-6	Rheostatic Control of Motor Speed	208
7-7	Series-parallel Control	209

7-8	Speed Control by Rheostatic Variation of Field Flux	212
7-9	Speed Control by Variation of Field Reluctance	212
7-10	Multivoltage Speed Control	213
7-11	The Ward-Leonard Adjustable-voltage Control. Electromechanical Amplification	214
7-12	Self-excited Series and Shunt Variable-voltage Control	215
7-13	Dynamic Braking. Regenerative Control	217
7-14	Flywheel Load Equalizers	219
	Division of Load Equalizers	220
7-16	Rotating Amplifiers	220
7-17	Applications of One-stage Rotating Amplifier	221
7-18	The Amplidyne	226
Chap	ter8 Efficiency, Rating, and Heating	230
8-1	Conventional and Measured Efficiency	230
8-2	Absorption and Transmission Dynamometers	231
8-3	Circulating Power Test	232
8-4	Measurement of Losses	234
8-5	Schedule of Losses	234
8-6	Efficiency and Losses in Constant-potential Constant-speed Machines	237
8-7	Condition for Maximum Efficiency	240
8-8	Location of Point of Maximum Efficiency	242
8-9	All-day Efficiency	243
8-10	Efficiency and Losses in Variable-speed Machines	243
8-11	Hysteresis Loss	245
8-12	Eddy-current Loss	248
8-13	Total Core Loss	252
8-14	Mechanical Losses	253
8-15	Stray Load Losses	254
8-16	Operating Conditions and Rating of D-C Machines	255
8-17	Temperature Limitations	256
8-18	Commutation Limitations	258
8-19	Overspeed Limitations	259
8-20	Dielectric Tests	259
8-21	Heating and Cooling Curves	259
8-22	Heating of Field Coils	263
8-23	Heating of Commutator	264
8-24	Rating of Enclosed Motors	264

Chap	ter9 Commutation	266
9-1	Linear and Nonlinear Commutation	266
9-2	Approximate Mathematical Relations in Commutated Coil	269
9-3	Relations between Commutating EMF, Contact Drop, and Reactance Voltage	270
9-4	Resistance and Voltage Commutation	273
9-5	Mechanical Characteristics of Brush Contact	275
9-6	Electrical Characteristics of Brushes and The Contact Surface	278
9-7	Types of Sparking at the Carbon-copper Contact	281
9-8	Arcing and Nonarcing Relations	282
9-9	Reaction of Short-circuit Current upon Main Field	283
9-10	Flashing at the Commutator	284
9-11	Pulsations of Commutation Field	285
9-12	Simultaneous Commutation of Adjacent Coils	285
9-13	Successive Phases of Short Circuit in Coils of a Slot	288
9-14	Selective Commutation in Wave Windings	290
9-15	Duration of Commutation	290
9-16	Calculation of Self-inductance of Short-circuited Coil	291
9-17	Calculation of Mutual Inductance of Neighboring Coils	296
9-18	Approximate Calculation of Reactance Voltage	298

Chap	ter10 Special machines and Applications	302
10-1	Boosters	302
10-2	Series Booster	302
10-3	Shunt Booster	303
10-4	Constant-current of Nonreversible Booster	305
10-5	Reversible Booster	306
10-6	Automobile Electrical Equipment	307
10-7	The Third-brush Generator	308
10-8	The Rosenberg Generator	310
10-9	Train Lighting Systems	315
10-10	The Dynamotor	316
10-11	Arc-welding Generators	317
10-12	Diverter-pole Generator	322

Index

359