621.365 CAR

Contact "Library Services" : info@dss.go.th

Contents

	Contributor contact details Woodhead Publishing Series in Electronic and Optical Materials	xi xv
Part I	Optical properties and fabrication of carbon nanotubes and graphene	1
1	Fundamental optical properties of carbon nanotubes and graphene K. Matsuda, Kyoto University, Japan	3
1.1	Introduction	3
1.2	Basic optical properties of carbon nanotubes	4
1.3	Novel excitonic properties of carbon nanotubes	12
1.4	Conclusion	23
1.5	References	23
2	Synthesis of carbon nanotubes and graphene for photonic applications E. EINARSSON and S. MARUYAMA, The University of Tokyo, Japan	26
2.1	Introduction	26
2.2	Synthesis of single-walled carbon nanotubes (SWNTs)	27
2.3	Single-walled carbon nanotube synthesis for photonic	
	applications	34
2.4	Graphene synthesis	38
2.5	Conclusion and future trends	47
2.6	References	48

1

vi Contents

3	Carbon nanotube and graphene photonic devices: nonlinearity enhancement and novel preparation approaches YW. Song, Korea Institute of Science and Technology (KIST), South Korea	57
3.1	Introduction	57
3.2	Nonlinearity of carbon nanotubes and graphene; saturable	50
3.3	absorption Novel interaction schemes of propagating light with carbon	58
	nanostructures	62
3.4	Highly efficient preparation of fiber mode-lockers	77
3.5	Conclusion	92
3.6	References	92
Part II	Carbon nanotubes and graphene for laser applications	97
4	Optical gain and lasing in carbon nanotubes E. GAUFRÈS, N. IZARD, A. NOURY, X. LE ROUX and L. VIVIEN, CNRS – Université Paris Sud, France	99
4.1	Introduction	99
4.2	Extraction of semiconducting carbon nanotubes	100
4.3	Towards carbon nanotubes-based lasers	109
4.4	Optical gain in single-walled carbon nanotubes (SWNTs)	109
4.5	Conclusion	115
4.6	References	116
5	Carbon nanotube and graphene-based fiber lasers A. Martinez and S. Yamashita, University of Tokyo, Japan	121
5.1	Introduction	121
5.2	Carbon nanotube and graphene saturable absorbers	123
5.3	Mode-locked fiber lasers employing graphene and CNTs	133
5.4	Conclusion and future trends	139
5.5	References	140
6	Carbon-nanotube-based bulk solid-state lasers W. B. Cho and F. Rotermund, Ajou University, South Korea	144
6.1	Introduction	144
6.2	Fabrication of single-walled carbon nanotubes	
	(SWCNTs)-based saturable absorbers	146

6.3	Device characteristics	150
6.4	Mode-locking of bulk solid-state lasers	156
6.5	Conclusion and future trends	166
6.6	References	167
7	Electromagnetic nonlinearities in graphene S. MIKHAILOV, University of Augsburg, Germany	171
7.1	Introduction	171
7.2	Electronic properties of graphene	173
7.3	Linear electrodynamics of graphene	180
7.4	Nonlinear electromagnetic response of graphene	196
7.5	Conclusion and future trends	216
7.6	Acknowledgements	217
7.7	References	217
8	Carbon nanotube-based nonlinear photonic devices K. K. Cнow, Nanyang Technological University, Singapore	220
8.1	Introduction	220
8.2	Design and fabrication of carbon nanotube (CNT)-based	
0.2	nonlinear photonic devices	222
8.3	Applications of CNT-based nonlinear photonic devices	229
8.4	Conclusion	236
8.5	References	230
Part III	Carbon-based optoelectronics	239
9	Carbon nanotube solar cells	241
	B. A. BAKER, H. ZHANG, TG. CHA and J. H. CHOI, Purdue University, USA	
9.1	Introduction	241
9.2	Optoelectronic properties of carbon nanotubes	242
9.3	Scope of the study	246
9.4	Carbon nanotubes in solid-state bulk heterojunction	
	polymer solar cells	246
9.5	Carbon nanotubes in liquid phase photoelectrochemical	
	cells: donor-acceptor hybrids	252
9.6	Single-walled carbon nanotubes in photoactive	
	layer of dye-sensitized solar cells	256
9.7	Carbon nanotubes as electrode materials in	0
	photovoltaic devices	257
	1	

viii	Contents	
9.8	Developing technologies	259
9.9	Conclusion and future trends	262
9.10	Acknowledgement	263
9.11	References	263
10	Carbon nanotube-based optical platforms for	
	biomolecular detection	270
	J. PAN, TG. CHA, H. CHEN and J. H. CHOI, Purdue University, USA	
10.1	Introduction	270
10.2	Optical-sensing mechanism	275
10.3	Carbon nanotube-based optical sensors for chemical and	
	biological molecules	281
10.4	Advanced optical-sensing applications	286
10.5	Conclusion	293
10.6	Acknowledgment	294
10.7	References	294
11	Carbon nanotube-based photovoltaic and	
	light-emitting diodes	298
	LM. PENG, S. WANG and Z. ZHANG, Peking University, China	
11.1	Introduction to carbon nanotube (CNT) diodes	298
11.2	Doping-free fabrication and characteristics of CNT diodes	299
11.3	Performance and optimization of CNT photovoltaic diodes	302
11.4	Photovoltage multiplication in CNT diodes	307
11.5	Carbon nanotube-based light-emitting diodes	310
11.6	Conclusion and future trends	313
11.7	Acknowledgements	316
11.8	References	316
12	Hybrid carbon nanotube-liquid crystal	
	nanophotonic devices	319
	T. WILKINSON and H. BUTT, University of Cambridge, UK	
12.1	Introduction	319
12.2	Uniform patterned growth of multiwall carbon nanotubes	
	(MWCNTs)	320
12.3	Simple optics of nematic liquid crystals	321
12.4	Carbon nanotubes as electrode structures	324
12.5	Reconfigurable microlens arrays	328
12.6	Transparent nanophotonic devices	330

12.7	Photonic band gap structures using MWCNTs	334
12.8	Towards photonic metamaterials	337
12.9	Conclusion	343
12.10	References	343
13	Quantum light sources based on individual carbon	
	nanotubes	346
	W. WALDEN-NEWMAN and S. STRAUF, Stevens Institute of Technology, USA	
13.1	Introduction	346
13.2	Exciton emission from individual single-walled carbon	
	nanotubes (SWCNTs)	348
13.3	Blinking and spectral diffusion phenomena in individual	
	SWCNTs	353
13.4	Techniques to suppress and remove blinking and spectral	
	diffusion	359
13.5	Quantum light sources based on SWCNTs	368
13.6	Conclusion and future trends	375
13.7	Acknowledgment	375
13.8	References	376
	Index	385