621.36 CHA

Contents

Preface to the Reissue of the Materials Characterization Series ix

Preface to Series x

Preface to the Reissue of *Characterization of Optical Materials* xi Preface xii

Contributors xiv

INTRODUCTION 1

PART I: INFLUENCE OF SURFACE MORPHOLOGY AND MICROSTRUCTURE ON OPTICAL RESPONSE

CHARACTERIZATION OF SURFACE ROUGHNESS

- 1.1 Introduction 9
- 1.2 What Surface Roughness Is 10
- 1.3 How Surface Roughness Affects Optical Measurements 14
- 1.4 How Surface Roughness and Scattering Are Measured 14
- 1.5 Characterization of Selected Surfaces 20
- 1.6 Future Directions 23

CHARACTERIZATION OF THE NEAR-SURFACE REGION USING POLARIZATION-SENSITIVE OPTICAL TECHNIQUES

- 2.1 Introduction 27
- 2.2 Ellipsometry 29 Experimental Implementations of Ellipsometry 29, Analysis of Ellipsometry Data 32
- 2.3 Microstructural Determinations from Ellipsometry Data 34 Temperature Dependence of the Optical Properties of Silicon 34, Determination of the Optical Functions of Glasses Using SE 35, Spectroscopic Ellipsometry Studies of SiO₂/Si 37, Spectroscopic Ellipsometry for Complicated Film Structures 38, Time-Resolved Ellipsometry 40, Single-Wavelength Real-Time Monitoring of Film Growth 41, Multiple-Wavelength Real-Time Monitoring of Film Growth 42, Infrared Ellipsometry Studies of Film Growth 44

THE COMPOSITION, STOICHIOMETRY, AND RELATED MICROSTRUCTURE OF OPTICAL MATERIALS

- 3.1 Introduction 49
- 3.2 Aspects of Raman Scattering 50
- 3.3 III–V Semiconductor Systems 51
- 3.4 Group IV Materials 56
- **3.5** Amorphous and Microcrystalline Semiconductors 59 Chalcogenide Glasses 60, Group IV Microcrystalline Semiconductors 63
- 3.6 Summary 66

DIAMOND AS AN OPTICAL MATERIAL

- 4.1 Introduction 71
- 4.2 Deposition Methods 72
- 4.3 Optical Properties of CVD Diamond 74
- 4.4 Defects in CVD Diamond 76
- 4.5 Polishing CVD Diamond 79
- 4.6 X-ray Window 80
- 4.7 Summary 81

PART II: STABILITY AND MODIFICATION OF FILM AND SURFACE OPTICAL PROPERTIES

MULTILAYER OPTICAL COATINGS

- 5.1 Introduction 87
- 5.2 Single-Layer Optical Coatings 89 Optical Constants 90, Composition Measurement Techniques 91
- 5.3 Multilayer Optical Coatings 106 Compositional Analysis 107, Surface Analytical Techniques 108, Microstructural Analysis of Multilayer Optical Coatings 109
- 5.4 Stability of Multilayer Optical Coatings 111
- 5.5 Future Compositional and Microstructural Analytical Techniques 113

CHARACTERIZATION AND CONTROL OF STRESS IN OPTICAL FILMS

- 6.1 Introduction 117
- 6.2 Origins of Stress 119
- vi Contents

- 6.3 Techniques for Modifying or Controlling Film Stress 124
 Effect of Deposition Parameters 124, Effect of Ion-Assisted Deposition 127, Effect of Impurities 127, Effect of Post Deposition Annealing 128
- 6.4 Stress Measurement Techniques 130 Substrate Deformation 130, X-Ray Diffraction (XRD) 133, Raman Spectroscopy 134
- 6.5 Future Directions 136

SURFACE MODIFICATION OF OPTICAL MATERIALS

- 7.1 Introduction 141
- 7.2 Fundamental Processes 142 Ion–Solid Interactions 142, Defect Production, Rearrangement, and Retention 143
- 7.3 Ion Implantation of Some Optical Materials 145
 Glasses and Amorphous Silica 145, α-Quartz (SiO₂) 147,
 Halides 148, Sapphire (α-Al₂O₃) 149, LiNbO₃ 152,
 Preparation of Optical Components by Ion Implantation 153

LASER-INDUCED DAMAGE TO OPTICAL MATERIALS

- 8.1 Introduction 157
- 8.2 Laser Damage Definition and Statistics 158 Defining Damage 158, Collecting Damage Statistical Data 159, Types of Damage Probability Distributions 160, Identification of Pre-Damage Sites 160, Changing the Damage Threshold 161
- **8.3** In Situ Diagnostics 165 Photothermal Techniques 165, Particle Emission 168
- 8.4 Postmortem Diagnostics 170 Surface Charge State 170, Surface Phase and Structure Analysis 171
- 8.5 Future Directions 174

APPENDIX: TECHNIQUE SUMMARIES

- 1 Auger Electron Spectroscopy (AES) 181
- 2 Cathodoluminescence (CL) 182
- Belectron Energy-Loss Spectroscopy in the Transmission Electron Microscope (EELS) 183
- 4 Energy-Dispersive X-Ray Spectroscopy (EDS) 184
- 5 Fourier Transform Infrared Spectroscopy (FTIR) 185
- 6 Light Microscopy 186

7	Modulation Spectroscopy 187
8	Nuclear Reaction Analysis (NRA) 188
9	Optical Scatterometry 189
10	Photoluminescence (PL) 190
11	Photothermal Displacement Technique 191
12	Raman Spectroscopy 193
13	Rutherford Backscattering Spectrometry (RBS) 194
14	Scanning Electron Microscopy (SEM) 195
15	Scanning Transmission Electron Microscopy (STEM) 196
16	Scanning Tunneling Microscopy and Scanning Force Microscopy (STM and SFM) 197
17	Static Secondary Ion Mass Spectrometry (Static SIMS) 198
18	Surface Roughness: Measurement, Formation by Sputtering, Impact on Depth Profiling 199
19	Total Internal Reflection Microscopy 200
20	Transmission Electron Microscopy (TEM) 202
21	Variable-Angle Spectroscopic Ellipsometry (VASE) 203
22	X-Ray Diffraction (XRD) 204
23	X-Ray Fluorescence (XRF) 205
24	X-Ray Photoelectron Spectroscopy (XPS) 206
Index 207	