Contents Maria South States And S

Alono-mode and antifempide (provid-

Preface			
	Elec	ctromagnetic waves	1
	1.1	Introduction	1
	1.2	Maxwell's equations	2
	1.3	Electromagnetic waves in non-conducting media	5
	1.4	Energy flow in an electromagnetic wave	8
	1.5	Electromagnetic waves in conducting materials	9
	1.6	Propagation of waves in plasmas	12
	1.7	Polarization of waves	14
	1.8	Propagation in gyromagnetic media	15
	1.9	Boundary conditions	18
	1.10	Conclusion	23
		Exercises	23
2	Waves guided by perfectly conducting boundaries		25
	2.1	TEM transmission lines	25
	2.2	Reflection of waves by a conducting plane	27
	2.3	Transverse electric waves	29
	2.4	Transverse magnetic waves	34
	2.5	Propagation in a rectangular waveguide	36
	2.6	Power flow in a rectangular waveguide	.40
	2.7	Higher-order modes in a rectangular waveguide	43
	2.8	Other waveguides	48
	2.9	Conclusion	49
		Exercises	50
3	Wa	ves with dielectric boundaries	51
Ū	3.1	Reflection of waves by a dielectric boundary	51
	3.2	Total internal reflection	52
	3.3	The Brewster angle	53
	3.4	Dielectric waveguides	54
	~		

CONTENTS

- 3.5 Mono-mode and multi-mode optical fibres
- 3.6 Radomes, windows and optical blooming
- 3.7 Quasi TEM waveguides
- 3.8 Non-TEM waveguides
- 3.9 Conclusion Exercises
- 4 Waves with imperfectly conducting boundaries
 - 4.1 Waves incident normally on a conducting surface
 - 4.2 Transmission through a thin conducting sheet
 - 4.3 Electromagnetic screening
 - 4.4 Waves incident obliquely on a conducting surface
 - 4.5 Losses in transmission lines and waveguides
 - 4.6 Microwave attenuators
 - 4.7 Microwave loads
 - 4.8 Conclusion Exercises
- 5 Antennas
 - 5.1 Introduction
 - 5.2 Magnetic vector potential
 - 5.3 Retarded potentials
 - 5.4 Small electric dipole
 - 5.5 The reciprocity theorem
 - 5.6 Small magnetic dipole
 - 5.7 Half-wave dipole
 - 5.8 Dipole arrays
 - 5.9 Radiation from apertures
 - 5.10 Slot antennas
 - 5.11 Phased array antennas
 - 5.12 Conclusion Exercises

6 Coupling between wave-guiding systems

- 6.1 Introduction
- 6.2 Discontinuities
- 6.3 Broadband matching techniques
- 6.4 Coupling without change of mode
- 6.5 Coupling with change of mode
- 6.6 Coupling by apertures
- 6.7 Effect of holes in screens on screening effectiveness
- 6.8 Waveguide directional couplers
- '6.9 Distributed coupling
- 6.10 Conclusion Exercises

7	' Electromagnetic resonators and filters	158
	7.1 Introduction	158
	7.2 Transmission-line resonators	162
	7.3 Cavity resonators	168
	7.4 Effect of resonance on screened enclosures	171
	7.5 Dielectric resonators	173
	7.6 Fabry-Pérot resonators	176
	7.7 Filter theory	177
	7.8 I ransmission-line filters	180
	7.9 waveguide filters	183
	7.10 Optical inters	187
	Francisco	188
	Exercises	188
8	Ferrite devices	190
	8.1 Introduction	100
	8.2 Microwave properties of ferrites	190
	8.3 Resonance isolators	190
	8.4 Phase shifters and circulators	196
	8.5 Junction circulators	198
	8.6 Faraday rotation devices	200
	8.7 Edge mode devices	202
	8.8 YIG filters	204
	8.9 Conclusion	205
	Exercises	205
9	Solid state microwave devices	207
-	9.1 Introduction	206
	9.2 Semiconductor materials	206
	9.3 Diodes	200
	9.4 Transistors	209
	9.5 Detectors and mixers	213
	9.6 Switches	210
	9.7 Oscillators	221
	9.8 Amplifiers	225
	9.9 Monolithic microwave integrated circuits	223
	9.10 LEDs and laser diodes	227
	9.11 Conclusion	229
10	Vacuum devices	
τŲ	10.1 Introduction	230
	10.2 Space charge wave	230
	10.2 Space-charge waves	230
	10.3 Slow-wave structures	234
	10.7 Slow-wave structures	242
	10.5 Travening wave ludes	248

CONTENTS

1.

ix

CONTENTS

- 10.6 Crossed-field tubes
- 10.7 Fast-wave devices
- 10.8 Electron accelerators
- 10.9 Conclusion Exercises

11 Microwave measurements

- 11.1 Introduction

- 11.2 Measurement of frequency11.3 Measurement of power11.4 Measurement of gain and loss

- 11.4 Measurement of gain and loss
 11.5 Measurement of return loss
 11.6 Measurement of impedance
 11.7 Time-domain reflectometry
 11.8 Spectrum analyser measurements
- 11.9 Electromagnetic compatibility measurements
- 11.10 Measurement of resonators
- 11.11 Measurement of dielectric properties
- 11.12 Conclusion Exercises

12 Systems using electromagnetic waves

- 12.1 Introduction
- 12.2 Radio wave propagation
- 12.3 Radio communications12.4 Television broadcasting
- 12.5 Microwave communications
- 12.6 Radar
- 12.7 Electronic countermeasures
- 12.8 Industrial and domestic applications
- 12.9 Medical applications
- 12.10 Computer-aided design of microwave systems
- 12.11 Conclusion Exercises

References

Appendix A Transmission lines

Appendix B Vector formulae

Appendix C Constants and properties of materials

Appendix D Answers to selected problems

Index