CONTENTS

Preface,'v

CHAPTER 1 VOLT-AMPERE CHARACTERISTICS

- 1-1 Current, 1
- 1-2 The Volt-Ampere Characteristic of a Linear Device, 2
- 1-3 The Volt-Ampere Characteristic of a Nonlinear Device, 5
- 1-4 Determining the Static and Dynamic Resistances of a Nonlinear Device, 6
- 1-5 The Load Line, 8

CHAPTER 2 THE p-n JUNCTION DIODE

- 2-1 The Atom and Free Electrons, 16
- 2-2 Crystalline Structures and Covalent Bonds, 17
- 2-3 Electron-Hole Pairs, 18
- 2-4 Impurity Doping, 19
- 2-5 The p-n Junction, 21
- 2-6 Diode Action, 23
- 2-7 Reverse Current, 24
- 2-8 The *p*-*n* Diode Characteristic, 25

CHAPTER 3 THE TRANSISTOR

- 3-1 Relative Doping and the Depletion Region, 32
- 3-2 The Junction Transistor, 33
- 3-3 Transistor Currents, 34
- 3-4 The Relationship between α and β , 37
- 3-5 The Common-Emitter Configuration, 40
- 3-6 The Common-Emitter Output Characteristics, 42
- 3-7 Transistor Parameters, 45
- 3-8 The Common-Emitter Input Characteristics, 47

16

- 3-9 Temperature Effects, 49
- 3-10 Beta Spread, 50
- 3-11 dc Analysis of the Common-Emitter Configuration, 51
- 3-12 Transistor Ratings, 57

CHAPTER 4 THE ELEMENTARY TRANSISTOR AMPLIFIER 61

- 4-1 Analysis of a Single-Stage Amplifier, 61
- 4-2 Waveforms, 64
- 4-3 Gain, 65
- 4-4 The Function of the Batteries, 70
- 4-5 Current Source, 75
- 4-6 The Small Signal ac Equivalent Circuit: Approximate Model, 78
- 4-7 The Small Signal ac Equivalent Circuit: Exact Model, 82
- 4-8 Applications of the Equivalent Circuit, 88

CHAPTER 5 dc BIAS CIRCUITS AND STABILITY

- 5-1 Fixed Bias, 99
- 5-2 Instability of the Q Point, 105
- 5-3 Collector-to-Base Bias, 116
- 5-4 Analysis of the Collector-to-Base Bias Circuit, 121
- 5-5 Thevenin's Theorem, 130
- 5-6 Emitter Bias, 132
- ⁵ ⁷ Stability Factor, 143

CHAPTER 6 AMPLIFIERS IN CASCADE

- 6-1 Capacitor Coupling, 159
- 6-2 ac Analysis of the Capacitor-Coupled Amplifier, 169
- 6-3 The Cascade Connection, 174
- 6-4 Design Factors, 186
- 6-5 Gain of the Cascaded Amplifier, 195
- 6-6 Limitations on Cascading, 198
- 6-7 Direct Coupling the Emitter Bias Circuit, 204
- 6-8 Emitter Bias Circuit: Input Resistance, 206
- 6-9 Emitter Bias Circuit: Output Resistance, 209
- 6-10 Analysis of the Emitter-Biased Amplifier, 212
- 6-11 General Gain Equation, 220
- 6-12 ac Analysis of the Collector-to-Base Bias Circuit, 223

CHAPTER 7 FEEDBACK AMPLIFIERS

90

159

- 7-1 Relationship between β and $r_{\rm I}$, 235
- 7-2 Effect of β Variation on Amplifier Gain, 237
- 7-3 Negative ac Feedback: Emitter Bias, 240
- 7-4 General Feedback Theory, 243
- 7-5 Negative ac Feedback: Collector-to-Base Bias, 248

	7-6	Over-All Feedback, 250	
	7-7	Maximum Power Transfer, 259	
	7-8	Impedance Matching, 263	
	7-9	The Emitter-Follower Amplifier, 269	
	7-10	The Emitter-Follower as an Impedance Matcher, 273	
	7-11 •	The Emitter-Follower as a Buffer, 279	
CHAPTER	8 FI	REQUENCY RESPONSE	286
	8-1	The Concept of Frequency Response, 286	
	8-2	The Decibel, 290	
	8-3	The Frequency Plot, 294	
	8-4	Low-Frequency Response: Coupling Capacitor, 301	
	8-5	Low-Frequency Response: By-Pass Capacitor, 306	
	8-6	High-Frequency Response, 311	
	8-7	Frequency Response of Multi-Stage Amplifiers, 323	
CHAPTER	9 P	OWER AMPLIFIERS	328
	9-1	Maximum Output Power, 328	
	9-2	The Single-Ended Class A Power Amplifier, 333	
	9-3	Amplitude Distortion, 343	
	9-4	Class A Push–Pull Amplifier, 347	
CHAPTER	10	AMPLIFIER DESIGN	351
	10-1	Systems, 352	
	10-2	The Statement of the Design Problem, 353	
•	10-3	Determination of the Circuit Configuration, 354	
	10-4	Selection of the Transistor Type: The Specification	
		Sheet, 358	
	10-5	The Design of Stage 1, 366	
	10-6	The Design of Stage 2, 373	
	10-7	The Design of the Follower Stage, 376	
	10-8	The Design of the Feedback Loop, 379	
	10-9	The Selection of the Resistor Power Ratings, 382	
	10-10	The Selection of the Capacitors, 385	
	10-11	Troubleshooting the Circuit, 390	

Index, 399