Contents

	Preface Glossary	vii xiii
1.	INTRODUCTION Outline of the Problem Singular Tests	1 1 5
2.	SIMPLE HYPOTHESIS TESTING Optimum Decision Rule, Neyman-Pearson Criterion Bayes Criterion Minimax Test Sufficiency Receiver Operating Characteristics	6 8 11 13 15 16
3.	SIMPLE HYPOTHESES, MULTIPLE OBSERVATIONS Multiple but Correlated Observations Two Observations Multiple Observations Detection of a Known Signal in White Noise	20 23 23 27 28
4.	SIGNAL KNOWN EXCEPT FOR SOME UNKNOWN PARAMETERS Introduction Analytic Representation of Signals Distribution of the Likelihood Ratio	33 33 35 42
5.	SYNTHESIS OF FILTERS Signal Known Exactly Signal of Unknown Phase A Sequence of Pulses of Incoherent Phase	46 46 46 47
6.	TESTS IN THE ABSENCE OF AN A PRIORI DISTRIBUTION	48
7.	DETECTION OF KNOWN SIGNALS IN COLORED NOISE The Karhunen-Loève Expansion Definitions Theorems The Representation	54 55 57 58 63

CONTENTS

	The Detection Problem: Known Signal in Gaussian	
	Colored Noise	66
2	Distribution of the Likelihood Ratio	67
	Heuristic Discussion of the Test Function	71
8.	DETECTION OF STOCHASTIC SIGNALS IN NOISE	75
	Introduction	75
	Derivation of the Likelihood Ratio	76
	Probabilities of Error	82
	First Method	83
	Second Method	86
9.	SEQUENTIAL DETECTION	90
	Test for a Known Signal in White Noise with	
	Continuous Observations	90
	Known Signals in Colored Noise	96
	Optimum Property of the SPRT	97
	Signals of Unknown Strength	102
	Signals with Nuisance Parameters	105
	Sequential Estimation of Parameters	106
	APPENDIX	
A	SAMPLING ANALYSIS	109
	Definition	111
	Existence of the Limit	111
	Covariance Function of $n(t)$	112
	Spectral Density Function of $n(t)$	113
	High-frequency Form of the Sampling Theorem	113
E	B. References	116
	General Notes	116
	Notes by Chapter	117
	Bibliography	121
	Index	125