Contents and Subject Index

1
.3
.3
3
4
4
4
5
5
8
8
8
. 10
. 10
. 11
. 11
. 13
. 13
. 13
. 13
. 13
. 14
. 14
.14
. 17
. 20

Discussion: Gasifier Turbine Rotor	25
Discussion: Engine Block Distortion	27
Engine C-4, BU14	30
Summary	30
Discussion: Engine Test	33
Discussion: Failure Investigation	34
Discussion: Gasifier Turbine Blade Failure	35
Discussion: Metal Turbine Tip Shroud	39
Discussion: Foreign Object Damage	39
Discussion: Gasifier Turbine Nozzle	40
Discussion: Engine Block Distortion	44
III. CERAMIC MATERIALS DEVELOPMENT	. 49
Summary	. 49
Materials Behavior and Characterization.	
Summary	
Objective	
Approach	
Discussion: Sintered Silicon Carbide.	
Carborundum Sintered Alpha Silicon Carbide	
Annawerk CD-100 Sintered Silicon Carbide	
NGK Spark Plug EC-424	
Discussion: Reaction-Bonded Silicon Carbide.	. 52
Carborundum KX-02 Silicon Carbide	
Norton NC-430 Reaction-Bonded Silicon Carbide	
Norton NC-433 Reaction-Bonded Silicon Carbide	
Pure Carbon Refel Reaction-Bonded Silicon Carbide	
Kyocera SC-410 Reaction-Bonded Silicon Carbide	
NGK Spark Plug EC-414.	
Discussion: Sintered Silicon Nitride (NGK Spark Plug EC-12)	9) 64
Component Characterization and Qualification	
Summary.	-
Objective	
Approach	, no
RBSiC)	. 66
Discussion: 2070°F-Configuration Vanes.	. 68
Carborundum Sintered Alpha Silicon Carbide Pure Carbon Refel Reaction-Bonded Silicon Carbide	
Discussion: Inner Vane Support Rings	
Pure Carbon Refel Reaction-Bonded Silicon Carbide	
NGK-Locke SN-50 Sintered Silicon Nitride	
Kyocera SC-201 Sintered Silicon Carbide	
Discussion: Outer Vane Support Rings	74
Carborundum Sintered Alpha Silicon Carbide	
Pure Carbon Refel Reaction-Bonded Silicon Carbide	
NGK-Locke SN-50 Sintered Silicon Nitride	
Discussion: Vane Retaining Rings	. 81

· · · · · · · · · · · · · · · · · · ·	
NGK-Locke SN-50 Sintered Silicon Nitride	82
Discussion: Plenums (Norton NC-430 RBSiC)	82
Ceramic Component Process Development	83
Summary	83
Objective	83
Approach	83
Discussion	84
GTE Laboratories Sintered Silicon Nitride-Blades	84
Carborundum Sintered Alpha SiC-Blades	89
Carborundum RBSiC-Stationary Ring Components.	94
Carborundum Sintered Alpha Silicon Carbide–Plenums	99
Carborundum RBSiC–2070°F-Configuration Vanes	. 100
Development of Nondestructive Evaluation Techniques	. 106
Summary	. 106
Approach.	. 100
Discussion: High Frequency Ultrasonics	. 107
Discussion: Scanning Laser Acoustic Microscopy	. 110
Evaluation of Step Penetrameters	. 113
Evaluation of Knoop Indented Specimens	. 113
Evaluation of the Type A Speciment	. 114
Evaluation of Type B Specimens	. 115
Discussion: Scanning Photoacoustic Microscopy (SPAM).	. 117
Experimental Arrangement	. 119
	. 119
SPAM Cell Design	
Detection of Surface Creater	. 120
Detection of Surface Cracks	. 121
Detection of Subsurface Flaws.	. 121
Characterization of Ceramic Turbine Blades	. 123
Discussion: Ultrasonic Velocity.	. 128
Turbine Tip Shroud Abradability	. 131
Summary	. 131
Objective	. 132
Approach	. 132
Discussion	. 132
Materials Development	. 133
Materials Studies	. 135
Component Development	. 137
Ceramic Component Machining Technology	. 137
Summary	. 137
Objective	. 138
Approach	. 138
Discussion	. 138
Ceramic Blade Process Development Experiment.	. 140
Summary	. 140
Objective	. 140
Approach.	. 140
Discussion	1/1

Laboratory Characterization		141
Spin Testing	1	142
Data Reduction and Correlation		142
	•••	
	•••	
	1	
Summary	• • *	143
Objective	1	143
Approach/Discussion	1	144
	'	
	'	145
	1	145
	1	
	1	
	1	
	•••	
Vanes		
Shroud		
Shroud Analysis		
Discussion: Process Development.		
Vanes		
	1	
	1	
	1	
	1	
	1	
	1	154
2070°F-Configuration	1	155
	1	155
Objective	1	155
	1	
	1	
	1	
	1	
	1	
	1	
Hoop Pressurization Fixture	1	
Vibration Rig	1	102
Thermal Shock Rig		
	1	
2200 F*Connyulation,		
	1	
	1	
	1	
Discussion: Design	1	193

Summary	
Objęctive	196
Approach	197
Discussion: Design	199
Discussion: Test	208
Compliant Layer Materials	208
GTE Spin Coupons	211
Prototype Blades	211
2070°F-Configuration Blades, Follow-On Order No. 1	211
Gasifier Rotor No. 1	213
Blade Vibration Testing	215
Gasifier Rotor No. 2	215
Gasifier Rotor No. 3	217
GTE Silicon Nitride Blades	218
2070°F Blades, Follow-On Order No. 2, Alpha SiC.	221
Gasifier Rotor No. 4	222
Discussion: Alternate Blade Design	224
Ceramie Turbine Inlet Plenum	227
Summary.	227
Objective	231
Approach	231
Discussion	232
Power Turbine Nozzle	235
Summary.	235
Objective	236
Approach.	230
	237
	237
CATE CERAMIC REGENERATOR DEVELOPMENT	238
Summary	238
Regenerator Disk Development	238
Regenerator Seal Development.	238
Conclusions	238
Regenerator System Design and Analysis	239
Regenerator Disk Development	239
Corning AS Disks	239
1000°C (1832°F) AS Disk	239
1100°C (2012°F) AS Disk	239
Drive Gear Adapter and Gear Coating	239
NGK-Locke MAS Disk Development	239
Other Disk Materials	240
Regenerator Seal Development.	241
1900°F Engine Seal Configuration	241
2070°F Engine Seal Configuration	241
Wearface	242
Sealing Leaf	242
Test Facilities	242

V.

Regenerator Core Materials Development			. 242
Summary			242
Objective		•••	244
Approach			244
Discussion			
As-Received Strength		•••	245
Steady-State Thermal Exposure			
Cyclic Thermal Exposure			
Disk Seal Chemical Reaction			257
VI. GENERAL ENGINE DESIGN AND COMPONENT			
AERODYNAMIC RESEARCH			258
Summary			258
General Engine Design			258
Engine Block Cooling and Insulation			258
			258
			258
			259
			259
			260
Summary			260
	· •	• •	260
Approach			260
Discussion			260
5			260
Summary			260
Objective			260
Approach			260
Discussion			261
Metal Combustor Development			261
Summary			261
Objective			261
Approach			261
Discussion			261
Component Aerodynamic Research Gasifier Turbine Rig .	•••	• •	261

REFERENCES

262