CONTENTS

Contributors		ix
Preface	·	xi
Gabriel Stein	—1920–1976	xiii
Chapter 1	Photochemical Conversion and Storage of Solar Energy Gabriel Stein	
Chemic The Fut Hydr Sol for	al Utilization and Storage of Solar Quantum Energy ture Role of Wind, Photosynthetic Biomass and o–Electric Power ar Energy Utilization for Heating and Cooling and the Need Electricity as such	2
Electrici Pho Ser	ity Generation from Solar Power otoelectrochemical Cells niconductor Devices Based on Photosynthetic Apparatus	10 11
Homog Pho Pho	neels eneous Chemical Systems for Solar Energy Utilization otogalvanic Devices otosensitized Water-Splitting in Homogeneous Solutions	13 16 16 17
Therma Assis	lly Assisted Photochemical Reactions and Photochemically ted Thermal Reactions	22
Some C Referen	Conclusions ces	23 25
Chapter 2	Will Photosynthesis Solve the Energy Problem?	
		27
Introdu	ction	27
Efficien	Available cv of Photosynthesis	28
Areas R	equired for Solar Power	29
Food ve	rsus Fuel	34
Leaf Pro	otein	36
Energy	Plantations	37
Cellulos Westa T		38
waste L	nsposai	38

vi Contents

> **Greenhouse Production** Plant Selection and Breeding **Regulation of Plant Reactions and Products** Nitrogen Fixation **Biocatalytic Hydrogen Production Systems** Carbon Reduction Artificial Chlorophyll Membranes **Bacteriorhodopsin Membranes Concluding Remarks** References Comments Iames R. Bolton

Electron Transfer in Heterogeneous Photochemical Chapter 3 Reactions

Arnim Henglein and Michael Grätzel

Introduction

Energy Considerations

Reactions of the Hydrated Electron with Acceptors in Micelles Reactions of Radicals and Radical Anions with Acceptors in Micelles **Reactions of Light Excited Molecules in Micelles Electron Deficient States in Photochemical Reactions Reactions in Submicellar Systems**

References

3

^{*} Comments Thomas M. Dunn

Chapter 4 Power Generation by Photoelectrolysis

Heinz Gerischer

Introduction

Basic Processes at Semiconductor Electrodes Redox Reactions and Energy Levels The Semiconductor-Electrolyte Interface The Effect of Illumination The Source of Photoelectric Power Photochemical Charge Separation Charge Separation by Electric Field in the Semiconductor Charge Separation at the Interface The Result of Photoelectrolysis Photoelectrolytic Cell for the Decomposition of Water **Energetic Conditions Energy Conversion Efficiency** Combination of n- and p-type Semiconductors Photoelectrolytic Cell as Direct Power Source 'The Regenerative Mode of Operation The Semiconductor Redox Electrolyte Photoelectrolytic Cell Spectral Sensitization in Photoelectrolysis

The Stability of Illuminated Semiconductors

	Conte	ents vii
Summa	rizing Remarks	107
Referen		110
Comme	ents William E. Pinson	113
Chapter 5	Photogalvanic Processes	
-	Norman N. Lichtin	119
Definiti	ons	119
Brief D	escription of a Prototypical Photogalvanic Converter,	
The l	ron-Thionine Cell	120
Some C Phote	nemical Systems which have been Considered for	122
Process	es and Figures of Merit in Photogalvanic Transducers	
witho	out Capacity for Storage	123
Charact	rerization of Processes in Iron-Thiazine Totally Illuminate	ed-
Thin	Layer (II-IL) Cells	125
I Th	e Primary Quantum Yield of Charge Carriers	120
in	Solution, Φ_{ccs}	.132
Lif	etime of Charge Carriers in Solution in the Photochemica	1
Ste	ady State, τ_{ccs}	133
Ψ_{i}	nits on the Voltage Conversion Efficiency, Ere	136
Acknow	wledgment	139
Referer	ices	140
Comme	ents Morton Z. Hoffman	143
Chapter 6	Photochemical Production of a Fuel	
Prost 0	Luca Moggi	147
Introdu	iction	147
Direct	Intramolecular Photoreactions	148
Bimole	cular Redox Processes	152
Photoc	atalyzed Systems	154
Conclu	sion	160
Comm	1Ces ents Alexander D. Kirk	161
Comm		
Chapter 7	Ultrathin Barriers and Solar Energy Conversion	
	H. Ti Tien and Béla Karvaly	167
Introdu	action	167
Ultrath	in Barriers and Photosynthesis	169
01	verview of Photosynthesis	171
Th	e Thylakoid Membrane of the Photosynthetic Apparatus	172
So	lid-State Mechanism of Photosynthesis	173
Ultrath	in Barriers and Solar Cells	177
Ph	otoettect in Homogeneous Semiconductors	177

viii	Contents
	Photoeffect in Heterogeneous Semiconductors
	Effect of Junction Thickness
	Ultrathin Barriers and Pigmented Bilayer Lipid Membranes
	The Bilayer Lipid Membrane System

Properties of Pigmented BLM Dye Sensitized BLM **BLM Containing Bacteriorhodopsin** Excitation of Pigmented BLM by Pulsed Light Mechanism of Energy Transduction in Pigmented BLM Toward Construction of a Practical Device

178

184

187 188 194

200

205

210

213

218

References

...

Comments Michael Grätzel

Organic Molecular Energy Storage Reactions Chapter 8 Wolfgang H. F. Sasse

Introduction

General Aspects of Photochemical Systems Delivering Heat General Limitations Applying to Endergonic Quantum Processes

Absorption of Radiation

Ouantum and Chemical Yields

The Heat Contents of A and B

The Temperature of the Exothermic Reaction

• Examples of Thermally Reversible Endothermic Photoreactions Photodimers of Anthracenes

Photodimers in the Naphthalene Series

Naphthalene-Diphenylacetylene Photoadducts

Dicyclopentadien-1-one

1-Ethoxycarbonyl-1H-azepine

Norbornadienes

Conclusions

Acknowledgments

References

Comments Robert E. Schwerzel

Author Index Subject Index